Metodi Numerici per le equazioni differenziali
Numerical Methods for Partial Differential Equations
Corso per il Dottorato di ricerca in
Ingegneria civile, ambientale, della cooperazione internazionale e di matematica
Ciclo XXXII
Lucia Gastaldi

Orario (provvisorio) delle lezioni

Tutte le lezioni si tengono presso la Sezione di Matematica (via Valotti 9) nell'aula Seminari. Alcune ore verranno svolte presso il Laboratorio di Calcolo Scientifico del Dipartimento stesso.

Lun 5 Marzo 9:30-11:30
Mar 6 Marzo 9:30-11:30
Mer 7 Marzo 9:30-12:30 (in Laboratorio)
Lun 12 Marzo 9:30-11:30
Mar 13 Marzo 9:30-11:30
Gio 14 Marzo 9:30-12:30 (in Laboratorio)
Lun 19 Marzo 14:30-16:30
Mar 20 Marzo 9:30-11:30
Gio 22 Marzo 9:30-12:30 (in Laboratorio)

L'orario potrà subire variazioni a causa di impegni istituzionali del docente.

Giornale delle lezioni


Programma del corso

Problemi ellittici

Problemi parabolici


Argomenti opzionali a seconda dell'interesse degli studenti

Adattività di griglia e stime a posteriori

Problemi agli autovalori

Introduzione all'approssimazione di problemi iperbolici

Formulazione variazionale in forma mista
Content of the course (english)

Riferimenti bibliografici


Materiale del corso

Elementi finiti 1D
  • Problema ellittico del secondo ordine con condizioni di Dirichlet omogenee.
  • Formulazione variazionale. Costruzione della matrice e assemblaggio del termine noto.
  • Problemi ellittici con soluzione non regolare.
Elementi finiti 1D (parte 2)
  • Condizioni di Dirichlet non omogenee.
  • Condizioni di Neumann.
  • Problemi di diffusione-trasporto.
PDE Toolbox
  • PDETOOL con interfaccia grafica.
  • Comandi di Matlab per la risoluzione di PDE.
Equazione del calore
  • Equazione del calore
  • Elementi finiti
  • Discretizzazione spazio-tempo
  • Uso di PDE toolbox di Matlab
Advection diffusion equations
  • Computational fluid dynamics
  • Advection diffusion equations

[HOME]