Finite element method for advection diffusion

Lucia Gastaldi

DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it

Navier-Stokes equations

The equations governing the dynamics of incompressible fluids are:

Navier-Stokes equation

$$
\rho \left(\frac{\partial \mathbf{u}}{\partial t} + (\nabla \mathbf{u}) \mathbf{u} \right) - \text{div } \mu \mathcal{E}(u) + \nabla p = \rho \mathbf{b} \text{ in } \Omega
$$

div $\mathbf{u} = 0$.

where $\mathcal{E}(u) = \frac{1}{2}(\nabla u + \nabla u^{\top})$ Cauchy stress tensor: $\sigma = -\nabla p \mathbb{I} + \mu \mathcal{E}(u)$.

Advection diffusion equation

Equazione differenziale completa

$$
-\operatorname{div}(K\nabla u) + \beta \cdot \nabla u + \sigma u = f \qquad \text{in } \Omega
$$

$$
u = 0 \qquad \text{on } \partial\Omega
$$

Weak problem

Find $u \in H_0^1(a, b)$ such that

$$
a(u,v)=F(v) \quad \forall v \in H_0^1(\Omega),
$$

with

$$
a(u, v) = \int_{\Omega} (K \nabla u \nabla v + \beta \nabla u v + \sigma u v) dx
$$

$$
F(v) = \int_{\Omega} fv dx \quad \forall v \in H_0^1(\Omega)
$$

Finite element discretization

Given a regular triangulation \mathcal{T}_h , let np be the number of vertexes, ne number of the elements. We set

$$
X_h^r = \{ v \in C^0(\overline{\Omega}) : v|_K \in \mathbb{P}_r(K), \ \forall K \in \mathcal{T}_h \}
$$

$$
V_h = \{ v \in X_h^r : v = 0 \text{ on } \Omega \}.
$$

Discrete problem

Find $u_h \in V_h$ such that

$$
a(u_h, v_h) = F(v_h) \quad \forall v_h \in V_h.
$$

Let φ_i for $i = 1, ..., N(h)$ be the basis functions of V_h . Then

$$
u_h(x)=\sum_{i=1}^{N(h)}u_j\varphi_j(x).
$$

Taking $v_h = \varphi_i$ in the discrete equation we obtain

$$
\sum_{j=1}^{N(h)} u_j a(\varphi_j, \varphi_i) = F(\varphi_i) \quad i = 1, \ldots, N(h).
$$

Hence we have to solve the linear system $Au = F$ with

$$
A_{ij} = \int_{\Omega} (K \nabla \varphi_j \nabla \varphi_i + \beta \nabla \varphi_j \varphi_i + \sigma \varphi_j \varphi_i) dx
$$

The matrix A is not symmetric anymore.

Construction of the matrix

We use the following array provided by Matlab: p, t, e .

Construction of the matrix

We use the following array provided by Matlab: p, t, e .

The function shape2D contains the analytical expression of the basis functions on the reference element

 $shape2D(i,k,x,y)$

 $i = 1, 2, 3,$

 $k = 0$ for the function.

 $k = 1$ partial derivative with respect to x

 $k = 2$ partial derivative with respect to y

$$
F_T(\hat{\underline{x}}) = \underline{a} + B_T \hat{\underline{x}}
$$

We construct the matrix and the right hand side element by element. For each element we compute a local matrix 3×3 and a local vector by transforming the integrals into integrals on the reference element.

The change of variable in the derivatives gives:

$$
\frac{\partial \varphi_i}{\partial x} = \frac{\partial \hat{\varphi}_i}{\partial \hat{x}} \frac{\partial \hat{x}}{\partial x} + \frac{\partial \hat{\varphi}_i}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial x}
$$

$$
\frac{\partial \varphi_i}{\partial y} = \frac{\partial \hat{\varphi}_i}{\partial \hat{x}} \frac{\partial \hat{x}}{\partial y} + \frac{\partial \hat{\varphi}_i}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial y}
$$

and

$$
\frac{\partial \hat{x}}{\partial x}, \frac{\partial \hat{y}}{\partial x}, \frac{\partial \hat{x}}{\partial y}, \frac{\partial \hat{y}}{\partial y}
$$

are given by the element of the inverse of the Jacobian B_T .

Hence it holds:

$$
\int_{\mathcal{T}} \nabla \varphi_j \nabla \varphi_i dx = \int_{\hat{\mathcal{T}}} \nabla_{\hat{x}} \hat{\varphi}_i^{\top} B_{\mathcal{T}}^{-1} B_{\mathcal{T}}^{-\top} \nabla_{\hat{x}} \hat{\varphi}_j J d\hat{x}
$$

$$
\int_{\mathcal{T}} \beta \cdot \nabla \varphi_j \varphi_i dx = \int_{\hat{\mathcal{T}}} \beta \cdot B_{\mathcal{T}}^{-\top} \nabla_{\hat{x}} \hat{\varphi}_j \hat{\varphi}_i J d\hat{x}
$$

$$
\int_{\mathcal{T}} \varphi_j \varphi_i dx = \int_{\hat{\mathcal{T}}} \hat{\varphi}_j \hat{\varphi}_i J d\hat{x}
$$

$$
\int_{\mathcal{T}} f \varphi_i dx = \int_{\hat{\mathcal{T}}} f(F_{\mathcal{T}}(\hat{\underline{x}})) \hat{\varphi}_i J d\hat{x}
$$