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Linear transport equation on R

Problem

Find c(x , t) : R× [0,T ]→ R such that

∂c

∂t
+ v

∂c

∂x
= 0 x ∈ R, t ∈ (0,T ]

c(x , 0) = c0(x) x ∈ R.

Characteristic lines

For all x0 ∈ R, we consider the ordinary differential equation

dx

dt
(t) = v , t ∈ (0,T ], x(0) = x0.

The curves x(t) are the characteristic lines of the transport
equation.

Exact solution c(x , t) = c0(x − vt)
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Inflow boundary

For v > 0 the characteristic lines propa-
gate from the left to the right.
inflow boundary xin = 0.

0 L

v>0

0 L

v<0

For v < 0 the characteristic lines propa-
gate from the right to the left.
inflow boundary xin = L.
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Linear transport equation on bounded domains

Problem

Find c(x , t) : [0, L]× [0,T ]→ R such that

∂c

∂t
+ v

∂c

∂x
= 0 x ∈ (0, L), t ∈ (0,T ]

c(x , 0) = c0(x) x ∈ (0, 1)

c(xin, t) = c1(t) t ∈ (0,T ].

Exact solution

c(x , t) =

{
c0(x − vt) if 0 < x − vt < L
c1(t − x/v) if x − vt < 0 or x − vt > L
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The finite difference method

I time step ∆t
I mesh size h (for bounded domains h = L/N)
I grid points (xj , t

n) = (jh, n∆t)
I discrete solution cnj ≈ c(xj , t

n)

We set:
λ = ∆t/h

xj+1/2 = xj + h/2

Finite difference method

cn+1
j = cnj − λ(Hn

j+1/2 − Hn
j−1/2)

with Hn
j+1/2 = H(cnj , c

n
j+1).

The function H(·, ·) is the numerical flux.

CFL condition

|λv | ≤ 1
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Forward Euler/Centered – FE/C

cn+1
j = cnj −

λ

2
v(cnj+1 − cnj−1)

Hj+1/2 =
1

2
v(cj+1 + cj)

Truncation error

τ(∆t, h) = O(∆t + h2).

Stability

FE/C is stable, that is

‖cn‖∆,2 ≤ eT/2‖c0‖∆,2

under the condition
∆t ≤ (h/v)2.

FE/C is not strongly stable.
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Lax-Friedrichs – LF

cn+1
j =

1

2
(cnj+1 + cnj−1)− λ

2
v(cnj+1 − cnj−1)

Hj+1/2 =
1

2

(
v(cj+1 + cj)− λ−1(cj+1 − cj)

)
Truncation error

τ(∆t, h) = O
(

∆t + h2 +
h2

∆t

)
.

Stability

If the CFL condition is satisfied, LF is strongly stable

‖cn‖∆,1 ≤ ‖cn−1‖∆,1.
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Lax-Wendroff – LW

cn+1
j = cnj −

λ

2
v(cnj+1 − cnj−1) +

λ2v2

2
(cnj+1 − 2cnj + cnj−1)

Hj+1/2 =
1

2

(
v(cj+1 + cj)− λv2(cj+1 − cj)

)
Truncation error

τ(∆t, h) = O
(

∆t2 + h2 + h2∆t
)
.

Stability

Under the CFL condition, LW is strongly stable:
‖cn‖∆,2 ≤ ‖cn−1‖∆,2.
Using the von Neumann analysis: if c0

j = c0(xj) =
∑∞

k=−∞ αke
ikjh, then

cnj =
∞∑

k=−∞

αke
ikjhγnk with |γk | = 1− 4λ2v2 sin4

(hk
2

)
(1− λ2v2).
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Upwind – U

cn+1
j = cnj −

λ

2
v(cnj+1 − cnj−1) +

λ

2
|v |(cnj+1 − 2cnj + cnj−1)

Hj+1/2 =
1

2

(
v(cj+1 + cj)− |v |(cj+1 − cj)

)
Truncation error

τ(∆t, h) = O(∆t + h).

Stability

If the CFL condition is satisfied, U is strongly stable

‖cn‖∆,1 ≤ ‖cn−1‖∆,1.
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Function for solving linear transport equation

Input
I a propagation rate;

I I space interval, T final time;

I u0, u1 initial and inflow data;

I N number of subdivision of the interval [0, L];

I lambda λ = ∆t/h.

Output

I x grid points;

I t time;

I u n-th row contains the values of c in (x , tn).
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Exercise 1

Consider the equation:

∂c

∂t
+
∂c

∂x
= 0 x ∈ (−2, 3), t ∈ (0, 1.6]

c(x , 0) =

{
1− |x | |x | ≤ 1
0 |x | ≥ 1

c(−2, t) = 0 t ∈ (0, 1.6]

I Solve the equation using LF with h = 0.1 and λ = 0.8.

I Compare the computed solution with the exact one.

I Use smaller values for h and the same value for λ.

I Compute the solution for T = 0.8 with the same values of h
and λ = 1.6.

I Compute the solution with the other schemes and compare
the computed solutions.
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Exercise 2

For values of x in the interval [−1, 3] and t in [0, 2.4], solve the
transport equation

∂c

∂t
+
∂c

∂x
= 0,

with the initial data

c(x , 0) =

{
cos2(πx) |x | ≤ 1/2
0 otherwise

and the boundary data c(−1, t) = 0.
Use the four schemes for h = 1/10, h = 1/20, and h = 1/40 as
follows

a. Upwind with λ = 0.8
b. FE/C with λ = 0.8
c. LF with λ = 0.8 and λ = 1.6
d. LW with λ = 0.8

How does the error decrease as the mesh gets finer?
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Exercise 3

For values of x in the interval [0, 10] and t in [0, 10], solve the
transport equation

∂c

∂t
+
∂c

∂x
= 0,

with the initial data

c(x , 0) =

{
sin(2πx) 0 ≤ x ≤ 1
0 otherwise

and the boundary data c(0, t) = 0.
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