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Abstract

The immersed boundary method was introduced by Peskin in [31] to study the blood
flow in the heart and further applied to many situations where a fluid interacts with an
elastic structure. The basic idea is to consider the structure as a part of the fluid where
additional forces are applied and additional mass is localized. The forces exerted by
the structure on the fluid are taken into account as a source term in the Navier-Stokes
equations and are mathematically described as a Dirac delta function lying along the
immersed structure. In this paper we first review on various ways of modeling the
elastic forces in different physical situations. Then we focus on the discretization of
the immersed boundary method by means of finite elements which can handle the
Dirac delta function variationally avoiding the introduction of its regularization. Prac-
tical computational aspects are described and some preliminary numerical experiment
in two dimensions are reported.

Keywords: immersed boundary method, finite element method.

1 Introduction

Fluid-structure interaction systems often involve the resolution of the fluid dynamic
equations on a moving (that is, time dependent) domain. Several approaches have been
considered in order to deal with such problem. A classical way to overcome the diffi-
culties due to the reconstruction of the mesh at each time step, is the introduction of the
arbitrary Lagrangian-Eulerian (ALE) formulation [8, 26, 18, 19, 22, 23], transporting
the equations to a fixed arbitrary reference configuration. Although this approach has
been used successfully, its accurate implementation is expensive in real applications.
In order to be able to solve at low cost fluid structure interaction problems undergo-
ing moderate deformations, aeronautical engineers have developed transpiration tech-
niques, introducing suitable modifications of the interface boundary conditions (see,
e.g., [33, 10, 12, 11]).
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The fictitious domain method can also be used in order to simulate an incompress-
ible viscous flow around moving rigid bodies; the idea consists in extending the equa-
tions to a simple domain where a structured grid can be used and then considering
suitable Lagrange multipliers to enforce the boundary conditions along the moving
bodies, see [15, 16]. Unfortunately, this method is not able to deal with the interaction
between fluid and flexible solids with large deformations.

A completely different approach is due to Peskin who developed the immersed
boundary method (IBM) (see [31, 27]) to study flow patterns around heart valves. The
immersed boundary method is designed to handle a flexible boundary immersed in a
fluid, hence it is particularly suited for biological fluid dynamic problems (see, e.g.,
[34, 29, 37, 38, 13, 14, 7, 9, 3]. As we have already mentioned, the computation
requirement to evolve or adapt the mesh becomes considerably expensive in many
fluid-structure interaction systems. In the IBM, the structure is thought as a part of
the fluid where additional forces are applied, and where additional mass may be lo-
calized. Therefore, instead of separating the system in its two components coupled by
interface conditions, as it is conventionally done (see, e.g. [2, 32]), the incompressible
Navier-Stokes equations, with a nonuniform mass density and an applied elastic force
density, are used in order to describe the coupled motion of the hydroelastic system
in a unified way. The advantage of this method is that the fluid domain can have a
simple shape, so that structured grids can be used. On the other hand, the immersed
boundary is typically not aligned with the grid and it is represented using Lagrangian
variables, defined on a curvilinear mesh moving through the domain. Another fun-
damental assumption of the IBM is that the immersed structure has a fiber-like one
dimensional structure, which may have a mass but occupies no volume in the fluid
domain (see [27, 34]).

The original numerical approach to the IBM is based on finite differences for the
spatial discretization. This employs two independent grids, one for the Eulerian vari-
ables in the fluid and the other for the Lagrangian variables associated with the im-
mersed boundary. The main difficulty in the spatial discretization consists in the con-
struction of suitable approximation of the Dirac delta function which is used to take
into account the interaction equations, see [27]. The temporal discretization that is
currently used by Peskin and his coauthors is a second-order accurate Runge-Kutta
method, based on the midpoint rule (see, e.g., [21, 25]).

More recently, the finite element method has been applied to the spatial discretiza-
tion of the IBM in [4, 5, 35, 36]. In particular, in [35, 36] it has been proposed the
EIBM, extended immersed boundary method which is based on the idea of considering
the submerged elastic solid occupying a finite volume in the fluid domain. This was
done by replacing the kinematic and dynamic matching of the fluid-solid interface and
the effect of the immersed solid with nodal forces calculated in the context of finite el-
ement formulations. The equations in both fluid and solid domains are approximated
using finite elements, while the continuity between the fluid and the solid domains are
enforced interpolating the velocities and the distribution of forces delta function with
the reproducing kernel particle method (RKPM). This enables the construction of dis-
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cretized delta function which belongs to Cn with n chosen according to the required
smoothness.

Our approach to the discretization of the IBM is completely based upon the finite
element method. Our aim is to deal with the delta function, which is related to the
forces exerted by the immersed structure on the fluid and viceversa, in a variational
way. So that there is no need to construct a regularization of the delta function, but its
effect is taken into account by its action on the test functions.

The outline of the paper is the following. In Sect. 2 we recall the formulation of the
IBM and deduce the equivalence with a fluid-structure interaction system in the stan-
dard decoupled model. In Sect. 3 we introduce a variational formulation of the IBM
which is useful in the spatial finite element discretization. Sect.s 4 and 6 are devoted
to the finite element discretization of two models in two and three dimensions respec-
tively. In particular they contain the details on an efficient computational procedure
to evaluate the force term along the immersed boundary in the Navier-Stokes equa-
tions and several numerical experiments for the two dimensional case are reported in
Sect. 5.

2 Formulation of the immersed boundary method

The aim of this section is to review the immersed boundary method and to show how
it can model the fluid flow interacting with a flexible or elastic structure. Typically,
the immersed material has been modeled as a collections of fibers, see, e.g., [34]
for details and [27] for references to many applications. A different approach to the
description of an immersed elastic solid can be found in [13, 35, 36].

Let Ω be the two or a three dimensional domain containing the fluid and the flexible
or elastic structure. As usual the Navier-Stokes equations describe the dynamics of a
viscous incompressible fluid with respect to the Eulerian variables denoted by x:

ρ

(

∂u

∂t
+ u · ∇u

)

− µ∆u + ∇ p = F in Ω×]0, T [

∇ ·u = 0 in Ω×]0, T [.

(1)

Here ρ and µ denote the density and the viscosity of the fluid. The unknowns u(x, t)
and p(x, t) represent the velocity and the pressure, respectively. On the right hand side
of the first equation in (1), F denotes the density of the body force acting on the fluid.
It usually contains a singular vector field, which is zero everywhere, except possibly
on the surface representing the immersed structure. We assume that µ is constant,
while ρ can be a function of (x, t), since we consider the structure as a part of the fluid
carrying an additional mass.

The immersed boundary is considered as an elastic incompressible material filling
a two or three dimensional space or laying along an immersed boundary in the form of
a simple closed curve or surface. Let q denote the Lagrangian coordinates in the initial
solid domain Ω0, labeling a material point of it. The position of a point in the current
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solid domain at a time t is denoted by X(q, t), hence this represents the position in Ω
of the material point which was labeled by q at the initial time. Usually the fluid is
assumed to have a uniform mass density ρ0, while the mass density of the immersed
structure can be described introducing the excess Lagrangian mass density M(q), that
is the difference between the mass of the elastic material and the mass of the fluid
displaced by it. Then we can express the density of the fluid and the force exerted by
the structure on the fluid in terms of M(q), the excess of mass density, and of f(q, t),
the force density that the immersed material applies on the fluid, as follows:

ρ(x, t) = ρ0 +

∫

Ω0

M(q)δ(x − X(q, t))dq, in Ω×]0, T [, (2)

F(x, t) =

∫

Ω0

f(q, t)δ(x − X(q, t))dq, in Ω×]0, T [, (3)

where δ is the Dirac delta function in R
3. The force F given in (3) is the right hand

side of (1) and takes into account the interaction between the fluid and the immersed
structure. This is a crucial point in the modeling of different applications, since the
expression of f takes into account the elasticity properties of the structure. In the next
subsection we shall review some examples in two and three dimensions which can be
found in the literature.

In order to compute the position of the immersed structure another relation which
enforces the no slip condition for a viscous fluid has to be considered:

∂X

∂t
= u(X(q, t), t) in Ω0×]0, T [. (4)

The above equation means that the structure moves at the same velocity as the fluid.

To summarize, the resolution of the immersed boundary method requires to find u,
p and X which satisfy:

ρ

(

∂u

∂t
+ u · ∇u

)

− µ∆u + ∇ p = F in Ω×]0, T [ (5)

∇ ·u = 0 in Ω×]0, T [ (6)

ρ(x, t) = ρ0 +

∫

Ω0

M(q)δ(x − X(q, t))dq in Ω×]0, T [ (7)

F(x, t) =

∫

Ω0

f(q, t)δ(x − X(q, t))dq in Ω×]0, T [ (8)

∂X

∂t
= u(X(q, t), t) in Ω0×]0, T [ (9)

u(x, t) = 0 on ∂Ω×]0, T [ (10)

u(x, 0) = u0(x) in Ω (11)

X(q, 0) = X0(q) in Ω0. (12)

Conditions (10) and (11) represent boundary and initial conditions relative to the
Navier-Stokes equation (5)-(6); other boundary conditions could also be used. The
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last equation (12) is the initial condition for (9) which drives the motion of the im-
mersed structure. Since q is the Lagrangian variable associated to a material point in
the initial configuration, then X0(q) = q, if we assume that the reference configura-
tion is unstressed.

2.1 Calculation of the elastic forces

The aim of this subsection is to give some ideas on the calculation of the elastic forces
exerted by the immersed structure on the fluid. We shall consider two main examples
and give a brief description and the references for other approaches and applications.
As it can be seen from the variety of applications, the immersed boundary method can
produce robust numerical scheme in order to simulate intricate fluid-structure interac-
tion systems.

Example 1 Massless closed curve immersed in a fluid.

Let us first consider the simple model problem of a viscous incompressible fluid
in a two dimensional square domain Ω containing an immersed massless boundary in
the form of a curve (see, e.g., [30, 28]). To be more precise, for all t ∈ [0, T ], let Γt

be a simple closed elastic curve, the configuration of which is given in a parametric
form, X(s, t), 0 ≤ s ≤ L, X(0, t) = X(L, t). If the initial configuration is unstressed,
the parameter s marks a material point and L is the unstressed length of the boundary.
Since we assume that the boundary is massless, then the excess of density mass M
in (7) is zero.

The force exerted by the element of boundary ds on the fluid is f(s, t)ds. This force
can be computed from the boundary tension T (s, t) and the unit tangent τ as follows.
The tension T is determined by a generalized Hooke’s law of the form

T = σ

(∣

∣

∣

∣

∂X

∂s

∣

∣

∣

∣

; s, t

)

. (13)

This expression is motivated by the fact that the distance between two points along
the curve Γt is given by |dX| = |(∂X/∂s)ds| and that the distance between the same
two points in the reference configuration is |ds|. Hence the tension is a function of
the ratio of these distances and of s if the material has elastic properties which are
not homogeneous in space. Moreover, if the reference configuration is unstressed the
strain can be computed as |∂X/∂s| − 1.

The direction associated with the tension T is that of the curve itself and it is indi-
cated by the unit tangent

τ =
∂X/∂s

|∂X/∂s|
. (14)

The elastic force acting on a segment between two points s = a and s = b from
outside the segment is

(Tτ )(b, t) − (Tτ )(a, t) =

∫ b

a

∂

∂s
(Tτ )(s, t)ds.

5



Since the curve is massless, this force is transmitted on the fluid occupying the same
region as the curve; since a and b are arbitrary, it follows that the local density force
applied by the curve to the fluid is given by

f =
∂

∂s
(Tτ ). (15)

If we assume a stressed initial configuration and T linear with respect to |∂X/∂s|,
then we obtain from (15)

f = κ
∂2X

∂s2
, (16)

where κ is the elasticity constant of the material along the immersed boundary.

We observe that problem (5)-(12) can be reduced to a standard formulation in terms
of boundary conditions which hold along the immersed elastic interface. In particular
in [30] it has been proved that along the immersed curve the following conditions on
the jumps of the pressure and the velocity normal derivatives are satisfied:

[p] =
f · n

|∂X/∂s|

µτ ·

[

∂u

∂n

]

= −
f · τ

|∂X/∂s|
,

where [·] denotes the jump across the immersed boundary.

Example 2 Massless elastic membrane immersed in a fluid.

This case can be seen as a straightforward extension of the previous one. We as-
sume that the fluid domain Ω is a three dimensional cube containing an immersed
moving membrane. The membrane Σt is represented by X(r, s, t), where r, s are the
parameters of some reference configuration with 0 ≤ r ≤ Lr and 0 ≤ s ≤ Ls.

The force exerted by the element of boundary dr ds on the fluid is f(r, s, t)dr ds.
Working as above we can calculate the local density force applied by the membrane
to the fluid as

f =
∂

∂r
(T1τ 1) +

∂

∂s
(T2τ 2).

Here T1 and T2 denote the tension in the r and s directions respectively and can be
expressed using a generalized Hooke’s law in terms of |∂X/∂r| and |∂X/∂s|. The
vectors τ 1 and τ 2 are unit vectors on the tangent plane given by

τ 1 =
∂X/∂r

|∂X/∂r|
, τ 2 =

∂X/∂s

|∂X/∂s|
.

If T1 and T2 depend linearly on |∂X/∂r| and |∂X/∂s|, respectively, then the force can
be written as follows:

f = κ∆r,sX, (17)
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where κ is the elasticity constant assuming that the material is homogeneous and
isotropic. Here ∆r,s denotes the Laplacian operator with respect to r and s and ∆r,sX

is the vector with components ∆r,sXi for i = 1, 2, 3.

We refer to [20] for the derivation of jump conditions in order to reformulate the
governing equations in a standard way.

Example 3 Elastic fibers immersed in a fluid.

In many applications, the immersed structure is considered as a system of elastic
fibers, with the fiber direction τ varying smoothly as a function of the position.

Let (q, s) ∈ D be material curvilinear coordinates describing the initial config-
uration D, chosen in such a manner that q = (q1, q2) is constant along each fiber.
Then the elastic potential energy of the material can be expressed as a function of the
configuration X at a time t, in the form:

E(X) =

∫

D

T

(∣

∣

∣

∣

∂X

∂x

∣

∣

∣

∣

)

dq ds,

assuming that it depends only on the strain in the fiber direction.

Using the principle of virtual work, the force density −F is the Fréchet derivative
of E that is:

F = −
∂E

∂X
,

which, after some calculation using also integration by parts with respect to s, yields:

F =
∂

∂s

(

T ′

(∣

∣

∣

∣

∂X

∂x

∣

∣

∣

∣

)

∂X/∂s

|∂X/∂s|

)

,

where T ′ is the derivative of T and represents the tension in the direction of the fibers
(see [27] for the details).

This general framework was used, for example, to model the blood flow in the
heart [28, 25], the fluid flow in collapsible elastic tubes [34], a flapping flexible fila-
ment in a flowing soap film [37, 38].

Example 4 Elastic shells immersed in a fluid.

In [13] an elastic shell immersed in a viscous incompressible fluid is described and
the resulting numerical method has been used in [14] to construct a comprehensive
three dimensional computational model of the macro-mechanics of the cochlea which
incorporates the intricate curved cochlear anatomy. The deformation of the shell is de-
scribed assuming the Kirchhoff-Love hypothesis. This means that the shell is viewed
as a material composed of rigid fibers which remain perpendicular to the middle sur-
face and cannot be stretched during the deformation, so that its deformation is com-
pletely determined by the deformation of the middle surface.

Example 5 Flexible solid occupying a finite volume within the fluid domain.
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A possible drawback of the IBM is the assumptions of the fiber-like one dimensional
structure, which may carry mass, but occupies no volume in the fluid. In [35, 36]
an incompressible three dimensional deformable structure occupying the region Ωs is
assumed to be immersed in an incompressible fluid domain Ωf , so that the following
relations hold true:

Ωf ∪ Ωs = Ω, Ωf ∩ Ωs = ∅. (18)

As usual, if q ∈ Ωs
0 denotes a material point in the initial configuration, then X(q, t)

represents the position of q in the current configuration Ωs(t). The governing equa-
tions of motion are written in a unified way for a continuum containing both fluid and
solid, and the interaction between the two components is taken into account as usual
by a Dirac delta function. The density force f in (8) is obtained in a different way from
the one presented in the above examples (see [35, 36] for details of the derivation).

Assume that ρf and ρs denote the fluid density and the solid density, respectively.
Then we solve (5)-(6) in the whole domain Ω with ρ = ρf and the force F on the right
hand side can be written as follows

F(x, t) =

∫

Ωs(t)

f(X(t), t)δ(x − X(t))dX,

fi = −(ρs − ρf )
dvs

i

dt
+

3
∑

j=1

(σs
ij,j − σf

ij,j) + (ρs − ρf )gi in Ωs(t), i = 1, 2, 3,

(19)

where gi represents the gravitational external force and vs
i the components of the ve-

locity of the solid.

At the end, the Cauchy stress σs
ij , can be modeled in different ways depending on

the material. For example, in [35, 36], the three dimensional almost incompressible
hyperelastic material model with the Mooney-Rivlin material description was intro-
duced.

3 Variational formulation of the immersed boundary
method

The spatial discretization of IBM has been originally done by means of finite differ-
ences. This requires the construction of two independent grids, one for the Eulerian
variables and the other for the Lagrangian variables. The only restriction, which is
imposed in order to avoid leaks, is that the Lagrangian grid is sufficiently fine in order
that the distance between the values of X at two adjacent points of the Lagrangian
grid is less than the Eulerian meshsize h. The main issue is the computation of the
force in (8), due to the presence of the Dirac delta function. This has been realized
by the construction of a suitable approximation function δh, which is nonsingular for
each h and approaches δ as h → 0 (we refer to [27] for a detailed description of such
construction).
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More recently, in [4, 5, 35, 36] a finite element approach to the spatial discretiza-
tion of the IBM has been proposed. In [35, 36] the finite element scheme is based on
a Petrov-Galerkin weak form of the Navier-Stokes equations and a variational formu-
lation of the momentum equation, which governs the deformation of the solid (see the
second equation in (19)). The coupling between the fluid and the structure is based on
the reproducing kernel particle method (RKPM) introduced in [24].

Our spatial discretization is based on the use of standard finite elements in the ap-
proximation of the Navier-Stokes equation and on the discretization of the immersed
boundary by continuous piecewise linear elements. Our approach is different from
that of [35, 36], since we deal with the force term involving the Dirac delta function
in a variational way, so that there is no need of approximating the delta function. For
simplicity, our presentation refers to Examples 1 and 2, hence in the rest of the paper
we shall assume a constant density ρ.

In order to apply a finite element method, we need to introduce a variational for-
mulation of the Navier-Stokes equations. To this aim, we specify a precise definition
of the force (8).

In order to work with Examples 1 and 2 in a unified way, let Bt denote the im-
mersed boundary, that is the one dimensional curve Γt in the case of Example 1 or the
membrane Σt in Example 2. Then let X(s, t) denote a material point on Bt, where
the variable s gives the parametric representation and varies in a domain D (D is an
interval in the case of Example 1 or a rectangle in Example 2). We observe that, in
equation (8), the boundary force F is multiplied by a two or three dimensional Dirac
function, over a domain of dimension one or two, respectively, so that the result-
ing force density F is a one dimensional Dirac function along Bt and the following
Lemma holds true.

Lemma 1 Assume that, for all t ∈ [0, T ], the immersed boundary Bt is Lipschitz
continuous. Then for all t ∈ ]0, T [, the force density F(t), defined formally in (8), is
a distribution function belonging to H−1(Ω)d (d = 2, 3) defined as follows: for all
v ∈ H1

0 (Ω)d

H−1< F(t),v >H1
0
=

∫

D

f(s, t) · v(X(s, t)) ds ∀t ∈ ]0, T [ . (20)

The proof can be obtained extending the one given in [4].

In view of the finite element discretization of the problem, we introduce a varia-
tional formulation of equations (5)-(6); hence we have to solve the following problem.

Problem 1 Given f ∈ L2(D × ]0, T [), u0 ∈ H1
0 (Ω)d and X0 : D → Ω, for all
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t ∈ ]0, T [, find (u(t), p(t)) ∈ H1
0 (Ω)d × L2

0(Ω) and X : D × ]0, T [ → Ω, such that

ρ

(

d

dt
(u(t),v) + (u · ∇u,v)

)

+ µ(∇u(t),∇v)

− (∇·v, p(t)) =< F(t),v > ∀v ∈ H1
0 (Ω)d (21)

(∇·u(t), q) = 0 ∀q ∈ L2
0(Ω) (22)

< F(t),v >=

∫

D

f(s, t)v(X(s, t)) ds ∀v ∈ H1
0 (Ω)d (23)

∂X

∂t
(s, t) = u(X(s, t), t) ∀s ∈ D (24)

u(x, 0) = u0(x) ∀x ∈ Ω (25)

X(s, 0) = X0(s) ∀s ∈ D. (26)

In (21) and (22), (·, ·) stands for the usual scalar product in L2(Ω), while < ·, · >
denotes the duality pairing between H−1(Ω)d and H1

0 (Ω)d. We recall that L2
0(Ω) is

the subset of L2(Ω) containing the elements with zero mean value.

We observe that a further condition on X should be added, so that for all s ∈ D and
t ∈ [0, T ], we have X(s, t) ∈ Ω. However, since we enforce an homogeneous Dirich-
let boundary condition on u, equation (24) implies that if X reaches the boundary of
Ω then it remains on ∂Ω for all the successive times.

To model the force density f , we make use of (16) in the two dimensional case and
of (17) in the three dimensional one, which can be written in an unified way as

f(s, t) = κ∆sX(s, t) (27)

where ∆sX, denotes the vector of the second derivative with respect to s (respectively,
the Laplacian operator with respect to the variables s1 and s2) of the components of
X (see (16) and (17)). The following stability estimate holds true for the solution of
Problem 1.

Lemma 2 For t ∈ ]0, T [, let u(t) ∈ H1
0 (Ω)d, p(t) ∈ L2

0(Ω) and X(t) ∈ (H1(D))d be
a solution of Problem 1, then it holds:

ρ

2

d

dt
||u(t)||20 + µ|| ∇u(t)||20 +

κ

2

d

dt
‖∇sX(t)‖2

0 = 0, (28)

where ∇sX denotes the array of the first derivatives of X and ‖ · ‖0 stands for the
norm in L2(Ω).

Proof. Take v = u in (21), use (24), and integrate by parts, recalling also (22). The
desired bound then follows.
The last term on the left hand side of (28) shows that the elastic energy of the immersed
boundary is conserved during the motion.

The next two sections are devoted to the introduction of the spatial finite element
discretization for a two and a three dimensional problem, respectively; in particular
we shall describe in detail how to practically compute (23) using (16) or (17).
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4 Finite element discretization of a two dimensional
problem

Let us consider the two dimensional situation described in Example 1. The fluid do-
main Ω is a square region, containing an immersed massless elastic boundary with
the form of a simple closed curve Γt. Using the notation of the previous section,
D = [0, L] is the parametric interval and the points on the curve are represented in
parametric form by X(s, t), 0 ≤ s ≤ L. Since the curve is closed we enforce that
X(0, t) = X(L, t) for t ∈ [0, T ]. Taking into account (16), Problem 1 reads:

Problem 2 Given f ∈ L2(]0, L[ × ]0, T [), u0 ∈ H1
0 (Ω)2 and X : [0, L] → Ω, for all

t ∈ ]0, T [, find (u(t), p(t)) ∈ H1
0 (Ω)2 ×L2

0(Ω) and X : [0, L]× ]0, T [ → Ω, such that

ρ

(

d

dt
(u(t),v) + (u · ∇u,v)

)

+ µ(∇u(t),∇v)

− (∇·v, p(t)) =< F(t),v > ∀v ∈ H1
0 (Ω)2 (29)

(∇·u(t), q) = 0 ∀q ∈ L2
0(Ω) (30)

< F(t),v >=

∫ L

0

κ
∂2X(s, t)

∂s2
v(X(s, t)) ds ∀v ∈ H1

0 (Ω)2 (31)

∂X

∂t
(s, t) = u(X(s, t), t) ∀s ∈ [0, L] (32)

u(x, 0) = u0(x) ∀x ∈ Ω (33)

X(s, 0) = X0(s) ∀s ∈ [0, L] (34)

X(0, t) = X(L, t) ∀t ∈ [0, T ]. (35)

Let us introduce the finite element spaces which will be used in the spatial discretiza-
tion. Let Th be a subdivision of Ω into triangles or rectangles. We denote by hx the
biggest diameter of the elements of Th. We then consider two finite dimensional sub-
spaces Vh ⊆ H1

0 (Ω)2 and Qh ⊆ L2
0(Ω). It is well known that the pair of spaces Vh

and Qh need to satisfy the inf-sup condition in order to have existence, uniqueness and
stability of the discrete solution of the Navier-Stokes problem (29)-(30) (see [17, 6]).

Next, let si, i = 0, · · · ,m with s0 = 0 and sm = L, be m + 1 distinct points of the
interval [0, L]. We set hs = max0≤i≤m |si − si−1|. Let Sh be the finite element space
of piecewise linear vectors defined on [0, L] as follows

Sh = {Y ∈ C0([0, L]; Ω) : Y|[si−1,si] ∈ P1([si−1, si])
2, i = 1, · · · ,m,

Y(s0) = Y(sm)}
(36)

where P1(I) stands for the space of affine polynomials on the interval I . For an ele-
ment Y ∈ Sh we shall use also the following notation Yi = Y(si) for i = 0, · · · ,m.

The first step, in order to introduce the discrete counterpart of Problem 2, is the
computation of (31) for all Xh ∈ Sh and for all v ∈ Vh. We integrate by parts the
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integral on the right hand side of (31) taking into account that Xh 0 = Xh m and that v
is continuous, then we obtain:

< Fh(t),v >= −κ

∫ L

0

∂Xh(s, t)

∂s

∂v(Xh(s, t))

∂s
ds. (37)

We write the last integral as a sum over the subintervals [si−1, si], use the fact that Xh

is linear, so that its derivative is constant, and arrive at:

< Fh(t),v > = −
m
∑

i=1

κ
∂Xh i

∂s
(t)

∫ si

si−1

∂v(Xh(s, t))

∂s
ds

= −
m
∑

i=1

κ
∂Xh i

∂s
(t) (v(Xh i(t)) − v(Xh i−1(t))) ,

(38)

where ∂Xh i(t)/∂s denotes the derivative of Xh(t) on ]si−1, si[.

Reordering the terms in the sum, we get:

< Fh(t),v > = −
m
∑

i=1

κ
∂Xh i

∂s
(t)v(Xh i(t)) +

m−1
∑

i=0

κ
∂Xh i+1

∂s
(t)v(Xh i(t))

=
m−1
∑

i=0

κ

(

∂Xh i+1

∂s
(t) −

∂Xh i

∂s
(t)

)

v(Xh i(t)).

(39)

Notice that the right hand side of (39) is meaningful, since v is continuous as it is
required for the elements in Vh.

We also observe that it is possible to derive (39) in a different way based on physical
interpretation. We can think of the discrete massless elastic boundary as being made
of a series of springs joining each two consecutive points Xh i and Xh i+1. Assuming
massless springs with zero length at rest and elastic constant γi, the force exerted on
each of the two points of the segment is proportional to the displacement from the rest
position, given by ∆xi, and follows the well known equation for ideal springs:

ϕi = −γi∆xi. (40)

We note that the elastic constant γi in (40) is spring dependent, meaning that in a
realistic model of a spring it depends on elastic properties of the material, on the mass
of the spring, on its density and on its geometry.

In our case the elongations of the two segments to which the i-th point belongs, are
given by (Xh i±1(t) − Xh it)) and they are responsible for pulling the two end points
Xh i±1(t) towards Xh i(t). On the other hand, each of the two end points pulls Xh i(t)
with a force which has the same intensity and the opposite direction, and the resultant
is given by:

ϕh i(Xh i(t), t) =γi

(

Xh i+1(t) − Xh i(t)
)

+ γi−1

(

Xh(si−1, t) − Xh(si, t)
)

=γi

∂Xh i+1

∂s
(t)(si+1 − si) − γi−1

∂Xh i

∂s
(t)(si − si−1).

(41)

12



Xi−1

Xi

Xi+1

ϕi = −γi∆xi

Figure 1: “Spring” interpretation of the boundary

Figure 1 illustrates this interpretation. If we assume the spring constants to be

γi = κ
1

si+1 − si

, (42)

we obtain an expression of the force equivalent to that presented in (39). Equation
(42) shows a possible interpretation we can give to the parametrization. A different
parametrization speed changes the elastic properties of the boundary.

As already stated these properties are mass and geometry dependent, but in our
model the immersed boundary is thought to be both massless and volumeless. There-
fore to reflect the physical meaning of the boundary mass and of its geometry without
taking into account their effect on the fluid, the mass and geometry dependencies are
incorporated in the elastic constants γi by making them dependent on the parametriza-
tion, as stated in equation (42). In Section 5.3 we illustrate these dependencies with
numerical experiments.

The spatial finite element discretization of Problem 2 reads:

Problem 3 Given f ∈ L2(]0, L[ × ]0, T [), u0h ∈ Vh and Xh 0 ∈ Sh, for all t ∈ ]0, T [,
find (uh(t), ph(t)) ∈ Vh × Qh and Xh(t) ∈ Sh, such that

ρ

(

d

dt
(uh(t),v) + (uh · ∇uh,v)

)

+ µ(∇uh(t),∇v)

− (∇·v, ph(t)) =< Fh(t),v > ∀v ∈ Vh (43)

(∇·uh(t), q) = 0 ∀q ∈ Qh (44)

< Fh(t),v >=
m−1
∑

i=0

κ

(

∂Xh i+1

∂s
(t) −

∂Xh i

∂s
(t)

)

v(Xh i(t)) ∀v ∈ Vh (45)

∂Xh i

∂t
(t) = uh(Xh i(t), t) ∀i = 0, 1, · · · ,m (46)

uh(x, 0) = u0h(x) ∀x ∈ Ω (47)

Xh i(0) = X0(si) ∀i = 1, · · · ,m. (48)
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The following discrete counterpart of the stability estimate (28) holds true:

Lemma 3 For t ∈ ]0, T [, let uh(t) ∈ Vh, ph(t) ∈ Qh and Xh(t) ∈ Sh be a solution
of Problem 3, then it holds:

ρ

2

d

dt
‖uh(t)‖

2
0 + µ‖∇u(t)‖2

0 +
κ

2

d

dt

∥

∥

∥

∥

∂Xh(t)

∂s

∥

∥

∥

∥

2

0

= 0. (49)

Proof. Following the same line as in the proof of the continuous case, let us take
v = uh(t) in (43), use (44) and integrate by parts the nonlinear advective term, then
we obtain:

ρ

2

d

dt
‖uh(t)‖

2
0 + µ‖∇uh(t)‖

2
0 =

m−1
∑

i=0

κ

(

∂Xh i+1

∂s
(t) −

∂Xh i

∂s
(t)

)

uh(Xh i(t), t).

(50)
Using (46) and the fact that Xh is piecewise linear, we can deal with the sum in the
right hand side of (50) as follows

m−1
∑

i=0

κ

(

∂Xh i+1

∂s
(t) −

∂Xh i

∂s
(t)

)

uh(Xh i(t), t)

=
m−1
∑

i=0

κ

(

∂Xh i+1

∂s
(t) −

∂Xh i

∂s
(t)

)

∂Xh i(t)

∂t

= κ
m−1
∑

i=0

(

Xh i+1(t) − Xh i(t)

si+1 − si

−
Xh i(t) − Xh i−1(t)

si − si−1

)

∂Xh i(t)

∂t

= −κ
m−1
∑

i=0

Xh i+1(t) − Xh i(t)

si+1 − si

∂

∂t
(Xh i+1(t) − Xh i(t))

= −
κ

2

m−1
∑

i=0

1

si+1 − si

∂

∂t
(Xh i+1(t) − Xh i(t))

2

= −
κ

2

m−1
∑

i=0

d

dt

∫ si+1

si

(

∂X(s, t)

∂s

)2

ds = −
κ

2

d

dt

∥

∥

∥

∥

∂Xh(t)

∂s

∥

∥

∥

∥

2

0

.

The desired estimate is then obtained inserting the last equality in (50).
Notice that the elasticity energy of the immersed boundary is conserved also in the
finite element discretization of Problem 2.

The time discretization is based on the backward Euler method. Let ∆t denote the
time step and let us indicate by the superscript n an unknown function at time tn =
n∆t. The number of time steps needed to reach the final time T is N . In Problem 3, the
Navier-Stokes equations (43)-(44) are strongly coupled through the source term (45)
with the system of ordinary differential equations given by (46). Therefore, in order
to avoid the resolution of a fully nonlinear system of equations at each time step,
we adopt a natural modification of the backward Euler method. Then, our scheme
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consists of two steps: given the approximation Xn
h of X at time n∆t, we construct

Fn+1
h and find the solution (un+1

h , pn+1
h ) to the Navier-Stokes equations; then we move

the immersed boundary, getting Xn+1
h . In the preliminary numerical experiments,

which we present at the end of this section, we have considered a linearization of
the Navier-Stokes equations, so that the time advancing scheme develops into the
following steps.

Given f ∈ L2(]0, L[ × ]0, T [), u0h ∈ Vh and X0h ∈ Sh, set u0
h = u0h and X0

h =
X0h, then for n = 0, 1, · · · , N − 1

Step 1. compute the source term

< Fn+1
h ,v >=

m−1
∑

i=0

κ

(

∂Xn
h i+1

∂s
−

∂Xn
h i

∂s

)

v(Xn
h i) ∀v ∈ Vh;

Step 2. find (un+1
h , pn+1

h ) ∈ Vh × Qh, such that

ρ(
un+1

h − un
h

∆t
,v) + µ(∇un+1

h ,∇v) − (∇·v, pn+1
h )

=< Fn+1
h ,v > ∀v ∈ Vh

(∇·un+1
h , q) = 0 ∀q ∈ Qh

Step 3. find Xn+1
h ∈ Sh, such that

Xn+1
h i − Xn

h i

∆t
= un+1

h (Xn
h i) ∀i = 1, · · · ,m.

5 Numerical results for the two dimensional formula-
tion

If not stated otherwise, the following examples have been computed with these pa-
rameters: the time step is fixed and it is equal to ∆t = 0.01, the domain refinement
is always 32 by 32 subsquares per unit square. For the discretization of the linearized
Navier-Stokes equations (see Step 2.) we use the well known Q2/P1 element, which
is stable.

The examples we present are thought as an overview on the potentiality of this
method, and are not intended to reproduce physical problems, therefore all the physi-
cal constants have been set to 1 (this is true for ρ, µ and κ).

The expression of the tension (13) has been set to

T =

∣

∣

∣

∣

∂X

∂s

∣

∣

∣

∣

, (51)

which corresponds to a model for zero-length, zero-mass ideal elastic material with
elastic properties proportional to the speed of parametrization. In Example 5.1 and 5.2
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m 16 32 64 128 256 512 1024

N = 4 36.4679 35.9438 37.1656 37.9881 38.4128 38.6349 38.7531
N = 8 15.9512 14.0895 13.0572 12.8094 12.8091 12.8430 12.8670
N = 16 20.1816 9.0145 7.2548 7.0113 7.1047 7.1913 7.2461
N = 32 45.2925 9.7634 2.7878 2.3081 2.3033 2.3245 2.3508

Table 1: Percentage of area loss

we show the general behavior of our model, both with and without a superimposed
source term. Example 5.3 shows the behavior of the model in presence of a non
uniform parametrization of the immersed boundary, highlighting the physical meaning
of equation (51) which is also evident in Example 5.4, while in Sections 5.5 and 5.6
we study the interactions between an immersed boundary with the domain boundary
∂Ω and that between two immersed boundaries, respectively.

The program used to compute the following examples has been written in C++
with the support of deal.II libraries(see [1] for a technical reference). The pictures
have been obtained both with Matlab and with IBM Opendx1.

5.1 Ellipse immersed in a static fluid

The first experiment we present has been developed to examine the influence of the
elastic force both on the immersed boundary and on the fluid and to show the good
behavior of our model.

The domain Ω is the unit square ]0, 1[×]0, 1[, the immersed boundary initial con-
figuration consists of an ellipse with uniform parametrization

X0(s) =

(

0.2 cos(2πs) + 0.3
0.1 sin(2πs) + 0.3

)

s ∈ [0, 1], (52)

approximated by using 618 uniformly spaced nodes.

In Table 1 we report the evolution of the immersed boundary area expressed in
percentage with respect to the initial area after 200 time steps. We indicate with m the
number of points on the immersed boundary, while N 2 is the number of subsquares of
the mesh. We observe that, in order to obtain reasonable results, it seems advisable to
have about one segment of the immersed boundary per element.

Figure 2(a) and Figure 2(b) represent respectively the evolution of the boundary
during the first 100 time steps and the pressure and fluid velocity at time t = 1. As
expected the system tends to an equilibrium configuration, which is the circle in a
two-dimensional setting.

1Deal II and IBM Opendx are Open Source Projects and follow the General Public License. They
can be downloaded at http://www.dealii.org/, and http://www.research.ibm.com/dx/
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Immersed boundary: time= 100dt

(a) Evolution of the boundary (b) Fluid pressure and velocity after 100
steps

Figure 2: Evolution of an immersed boundary subjected to its elastic force

5.2 Ellipse immersed in a moving fluid

As an extension to the previous results, we also studied the good behavior of our
model when the fluid is driving the motion of the immersed boundary. As we neglet
the convective term in the Navier-Stokes equations, we have to add an extra term to
the right hand side of (29). More precisely, we add a source term which would give
a steady solution u0, as shown in Figure 3(b). The parameters of this experiments
are identical to those of Section 5.1, and the explicit parametrization of the initial
configuration X0 is given in (52).

Figure 3(a) shows how the initial ellipse moves accordingly to the flow and reaches
the equilibrium configuration, which is a rotating circle. The rotation is emphasized in
the picture by the presence of a green triangle marking a fixed point on the immersed
boundary.

5.3 Parametrization dependencies

With the following experiment we want to show the implications of choosing (13) as
the tension formulation. We use a non uniform parametrization of the circle centered
at the barycenter of Ω, as shown in Figure 4(a).

As expected, the non uniformity of the parametrization reflects the physical mean-
ing of the quantization interval ∆s, which is morally a mass. Where the points are
farther away from each other, it means that the immersed boundary is more stretched
(there is a smaller amount of mass) and tries to reach the equilibrium position shown
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Immersed boundary: time= 200dt

(a) The rotating boundary (b) The rotating fluid

Figure 3: Ellipse driven by a rotating fluid

in Figure 4(c). The actual equilibrium is reached when the resultant of the tangent
forces at each point is null, which happens when the ratio between distortion ∆Xi and
quantization ∆s is evenly distributed along the boundary.

5.4 Non closed immersed boundary

Until now we have considered only closed curves immersed in a fluid, neglecting the
cases where the boundary is not closed. Let us consider now an elastic string, whose
initial configuration is given in Figure 5(a). The behavior of the model follows the
tension formulation (51) even if this is not an appropriate description of a physical
elastic string. If we do not modify our model, the rest condition for the boundary is
when it is collapsed to a single point, which is shown clearly in Figure 5.

This behavior confirms the appropriateness of our model. The incompressibility
of the fluid is taken into account in a natural way when the immersed boundary is a
closed curve, as pointed out in Example 5.1, but it is also evident when dealing with
strings: in Figure 5(c) it is possible to observe how the non-slip condition between the
fluid and the string imposes a divergence free motion in the fluid.

5.5 Interaction between immersed boundary and domain bound-
ary

In this test case we show what happens if one or more points of the immersed bound-
ary initial configuration touch the portion of domain boundary ∂Ω where homoge-
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(a) Step 1
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Immersed boundary: time= 15dt

(b) Step 15
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Immersed boundary: time= 200dt

(c) Step 200 (d) Fluid motion and pressure after
100 Steps

Figure 4: Non uniformly parametrized boundary immersed in a static fluid

neous Dirichlet boundary conditions are imposed. We observe that, since the velocity
vanishes at those points, then such points of the immersed boundary do not move from
their position.

We consider the behavior of a string immersed in a rectangular domain (Ω =
]0, 3[×]0, 1[) with both ends fixed at ∂Ω, as shown in Figure 6. We use the follow-
ing source F∗(x, y, t), which imposes a change of direction to the velocity:

F∗(x, y, t) =

(

sin(πy) cos(2πt)
0

)

. (53)

As already stated, we impose homogeneous Dirichlet boundary conditions on the hor-
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(b) Step 300
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Immersed boundary: time= 300dt

(c) Step 600 (d) The fluid after 100 steps

Figure 5: Non closed elastic string immersed in a static fluid

izontal sides of Ω, while along the vertical sides we have:

u(x, y) =

(

−π2 sin(πy) cos(2πt)
0

)

x = 0, 3.

5.6 Interaction between two immersed boundaries

This example shows the good behavior of our model when more than one immersed
boundary is considered. The domain taken under consideration is the same as in the
previous example, with a difference in the load, which generates two laminar flows di-
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(b) Step 25

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1
Immersed boundary: time= 50dt

(c) Step 50
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Immersed boundary: time= 75dt

(d) Step 75

Figure 6: Elastic string fixed at the boundary ∂Ω immersed in a moving fluid

rected in the opposite direction, each of them carrying a different immersed boundary.
The expression of the additional source term is given by

F∗(x, y, t) =

(

sin(2πy)
0

)

. (54)

The initial configuration of the two boundaries was chosen in order to make them
as close as possible to each other. Several snapshots of the evolution are reported in
Figure 7.

As expected the incompressibility of the fluid influences the behavior of the two
immersed boundaries when they approach each other. It is evident that they tend to
detach from the horizontal middle axis as soon as they become close enough to feel
the presence of the other boundary. It is possible to observe an increase in the pressure
of the fluid between the two boundaries, which separates them.
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(a) Step 0 (b) Step 50

(c) Step 100 (d) Step 200

(e) Step 250 (f) Step 300

(g) Step 350 (h) Step 400

(i) Step 450 (j) Step 500

Figure 7: Two immersed boundaries driven by laminar flows
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6 Finite element discretization of a three dimensional
problem

Let us now introduce the finite element discretization of Problem 1 in the case of a
three dimensional domain Ω containing a massless membrane.

For simplicity, let us assume that Ω is a polyhedral domain and that there is a mass-
less membrane at rest, fixed at the boundary of Ω; for example, in Fig. 8, the membrane
lies along a section of a parallelepiped. Hence, let D be the two dimensional domain
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Figure 8: The fluid domain Ω with the immersed boundary (in red) at the initial time.

described by the variable s = (r, s), which corresponds to the initial configuration of
the immersed boundary. In the picture, we have that D occupies a section at some
position x = x̄ and the variable s = (r, s) could be the Cartesian variable (y, z). Let
us rewrite Problem 1, taking into account the force density defined in (17).

Problem 4 Given f ∈ L2(D × ]0, T [), u0 ∈ H1
0 (Ω)3 and X0 : D → Ω, for all

t ∈ ]0, T [, find (u(t), p(t)) ∈ H1
0 (Ω)3 × L2

0(Ω) and X : D × ]0, T [ → Ω, such that

ρ

(

d

dt
(u(t),v) + (u · ∇u,v)

)

+ µ(∇u(t),∇v)

− (∇·v, p(t)) =< F(t),v > ∀v ∈ H1
0 (Ω)3 (55)

(∇·u(t), q) = 0 ∀q ∈ L2
0(Ω) (56)

< F(t),v >=

∫

D

κ∆sX(s, t)v(X(s, t))ds ∀v ∈ H1
0 (Ω)3 (57)

∂X

∂t
(s, t) = u(X(s, t), t) ∀s ∈ D (58)

u(x, 0) = u0(x) ∀x ∈ Ω (59)

X(s, 0) = X0(s) ∀s ∈ D (60)

X(s, t) = X0(s) ∀s ∈ ∂D. (61)

We observe that, for s ∈ ∂D, X0(s) are the points of ∂Ω where the membrane is fixed.
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Let Vh ⊆ H1
0 (Ω)3 and Qh ⊆ L2

0(Ω) be finite element spaces constructed on a mesh
Th of Ω made of tetrahedrons or parallelepipeds. We then consider a uniform subdi-
vision Sh of D into triangles with meshsize hs and introduce the space of piecewise
linear vector valued functions on it:

Sh = {Y ∈ C0(D; Ω) : Y|K ∈ P1(K),∀K ∈ Sh,Y(s) = X0(s) ∀s ∈ ∂D}. (62)

Let Nhs be the dimension of Sh (notice that it is equal to the number of internal vertices
of Sh). Let Y ∈ Sh, then for i = 1, . . . ,Nhs, Yi = Y(si) stands for the value of Y

at the node si. As in the two dimensional case, when dealing with the discretization
of (57), we would like to avoid the computation of ∆sXh for Xh ∈ Sh, hence we use
an integration by parts and obtain:

< F(t),v >= −κ

∫

D

(

∂Xh(s, t)

∂r

∂v(Xh(s, t))

∂r
+

∂Xh(s, t)

∂s

∂v(Xh(s, t))

∂s

)

ds.

We split the integral on the right hand side as the sum over the elements of Sh and
recall that the partial derivatives of Xh are constant on each element, so that we have
for all v ∈ Vh:

<Fh(t),v >

= −κ
∑

K∈Sh

(

∂Xh(t)

∂r

∣

∣

∣

K

∫

K

∂v(Xh(s, t))

∂r
ds +

∂Xh(t)

∂s

∣

∣

∣

K

∫

K

∂v(Xh(s, t))

∂s
ds

)

= −κ
∑

K∈Sh

(

∂Xh(t)

∂r

∣

∣

∣

K

∫

∂K

v(Xh(s, t)) ds −
∂Xh(t)

∂s

∣

∣

∣

K

∫

∂K

v(Xh(s, t)) dr

)

= −κ
∑

K∈Sh

∫

∂K

v(Xh(s, t))

(

∂Xh(t)

∂r
ds −

∂Xh(t)

∂s
dr

)

= −κ
∑

K∈Sh

∫

∂K

v(Xh(t)) ·
∂Xh(t)

∂n
dσ

where n stands for the outward normal unit vector of ∂K and σ is the curvilinear
abscissa along ∂K. We now split the integral along the boundaries of the elements
into the sum along each edge, so that taking into account that v is continuous across
the interelement edges and vanishes on ∂D, we obtain

< Fh(t),v >= −κ
∑

e∈Eh

∫

e

v(Xh(t)) ·

[

∂Xh(t)

∂n

]

dσ, (63)

where Eh is the set of all internal edges in Sh and [·] denotes the jump across an edge.

The expression in (63) has the advantage that all the quantities in the integral are
well defined, however it should be useful in view of more general applications to write
the integral with respect to intrinsic geometric quantities defined along the immersed
boundary instead of parametric variables as we have considered here.

Using (63) for the computation of the source term in the discretization of the
Navier-Stokes equations, we end up with the following discrete problem:
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Problem 5 Given f ∈ L2(D × ]0, T [), u0h ∈ Vh and X0h ∈ Sh, for all t ∈ ]0, T [,
find (uh(t), ph(t)) ∈ Vh × Qh and Xh(t) ∈ Sh, such that

ρ

(

d

dt
(uh(t),v) + (uh · ∇uh,v)

)

+ µ(∇uh(t),∇v)

− (∇·v, ph(t)) =< Fh(t),v > ∀v ∈ Vh (64)

(∇·uh(t), q) = 0 ∀q ∈ Qh (65)

< Fh(t),v >= −κ
∑

e∈Eh

∫

e

v(Xh(t)) ·

[

∂Xh(t)

∂n

]

dσ ∀v ∈ Vh (66)

∂Xh i

∂t
(t) = uh(Xh i(t), t) ∀i = 1, · · · ,Nhs (67)

uh(x, 0) = u0h(x) ∀x ∈ Ω (68)

Xh i(0) = X0h(si) ∀i = 1, · · · ,Nhs. (69)

7 Conclusions

We have recalled the formulation of the immersed boundary method and a list of pos-
sible application as they can be found in the literature. The key idea is to express
the action of the immersed boundary in terms of a concentrated load to the fluid dy-
namics, governed by the Navier–Stokes equation, by means of a Dirac delta function.
Choosing the correct strategy for the approximation of the delta function has been one
of the major challenges for the developers of the original immersed boundary method
(see, e.g. [27]). In this paper, we presented a finite element approach to the immersed
boundary method, according to [4, 5] (for another possible finite element approach,
see [36]). The main advantage of our formulation is that we do not need an approxi-
mation for the Dirac delta mass, whose action is only seen through its effect onto the
test function. We also developed a (mathematically rigorous and physically meaning-
ful) new technique to implement the action of the delta function. This procedure is
efficient in terms of computer time and accuracy. Preliminary two dimensional results
show the excellent behavior of our approach, where we have used the locally mass
preserving Q2/P1 element to approximate the fluid: sharp pressure discontinuities are
correctly captured and the scheme does not seem to suffer for any artificial diffusion
as it usually happens when the delta function is approximated. Our formulation nat-
urally extends to three space dimensions and to more complex situations; promising
3D numerical results are in progress.
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