Hyperbolic Partial Differential Equations

Lucia Gastaldi

DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it

Outline

(1) Overview of linear transport equation
(2) Finite difference schemes
(3) Exercises

Linear transport equation on \mathbb{R}

Problem
Find $c(x, t): \mathbb{R} \times[0, T] \rightarrow \mathbb{R}$ such that

$$
\begin{array}{ll}
\frac{\partial c}{\partial t}+a \frac{\partial c}{\partial x}=0 & x \in \mathbb{R}, t \in(0, T] \\
c(x, 0)=c_{0}(x) & x \in \mathbb{R}
\end{array}
$$

Characteristic lines
For all $x_{0} \in \mathbb{R}$, we consider the ordinary differential equation

$$
\frac{d x}{d t}(t)=a, t \in(0, T], \quad x(0)=x_{0}
$$

The curves $x(t)$ are the characteristic lines of the transport equation.

Exact solution $c(x, t)=c_{0}(x-a t)$

Inflow boundary

For $a>0$ the characteristic lines propagate from the left to the right. inflow boundary $x_{i n}=0$.

For $a<0$ the characteristic lines propagate from the right to the left. inflow boundary $x_{i n}=L$.

Linear transport equation on bounded domains

Problem

Find $c(x, t):[0, L] \times[0, T] \rightarrow \mathbb{R}$ such that

$$
\begin{array}{ll}
\frac{\partial c}{\partial t}+a \frac{\partial c}{\partial x}=0 & x \in(0, L), t \in(0, T] \\
c(x, 0)=c_{0}(x) & x \in(0,1) \\
c\left(x_{i n}, t\right)=c_{1}(t) & t \in(0, T]
\end{array}
$$

Exact solution

$$
c(x, t)= \begin{cases}c_{0}(x-a t) & \text { if } 0<x-a t<L \\ c_{1}(t-x / a) & \text { if } x-a t<0 \text { or } x-a t>L\end{cases}
$$

The finite difference method

- time step Δt
- mesh size h (for bounded domains $h=L / N$)
- grid points $\left(x_{j}, t^{n}\right)=(j h, n \Delta t)$
- discrete solution $c_{j}^{n} \approx c\left(x_{j}, t^{n}\right)$

We set:

$$
\begin{aligned}
& \lambda=\Delta t / h \\
& x_{j+1 / 2}=x_{j}+h / 2
\end{aligned}
$$

Finite difference method

$$
c_{j}^{n+1}=c_{j}^{n}-\lambda\left(H_{j+1 / 2}^{n}-H_{j-1 / 2}^{n}\right)
$$

with $H_{j+1 / 2}^{n}=H\left(c_{j}^{n}, c_{j+1}^{n}\right)$.
The function $H(\cdot, \cdot)$ is the numerical flux.
CFL condition

$$
|\lambda a| \leq 1
$$

Forward Euler/Centered - FE/C

$$
\begin{aligned}
& c_{j}^{n+1}=c_{j}^{n}-\frac{\lambda}{2} a\left(c_{j+1}^{n}-c_{j-1}^{n}\right) \\
& H_{j+1 / 2}=\frac{1}{2} a\left(c_{j+1}+c_{j}\right)
\end{aligned}
$$

Truncation error

$$
\tau(\Delta t, h)=\mathcal{O}\left(\Delta t+h^{2}\right)
$$

Stability

FE/C is stable, that is

$$
\left\|c^{n}\right\|_{\Delta, 2} \leq e^{T / 2}\left\|c^{0}\right\|_{\Delta, 2}
$$

under the condition

$$
\Delta t \leq\left(\frac{h}{a}\right)^{2}
$$

Lax-Friedrichs - LF

$$
\begin{aligned}
& c_{j}^{n+1}=\frac{1}{2}\left(c_{j+1}^{n}+c_{j-1}^{n}\right)-\frac{\lambda}{2} a\left(c_{j+1}^{n}-c_{j-1}^{n}\right) \\
& H_{j+1 / 2}=\frac{1}{2}\left(a\left(c_{j+1}+c_{j}\right)-\lambda^{-1}\left(c_{j+1}-c_{j}\right)\right)
\end{aligned}
$$

Truncation error

$$
\tau(\Delta t, h)=\mathcal{O}\left(\Delta t+h^{2}+\frac{h^{2}}{\Delta t}\right)
$$

Stability

If the CFL condition is satisfied, LF is strongly stable

$$
\left\|c^{n}\right\|_{\Delta, 1} \leq\left\|c^{n-1}\right\|_{\Delta, 1}
$$

Lax-Wendroff - LW

$$
\begin{aligned}
& c_{j}^{n+1}=c_{j}^{n}-\frac{\lambda}{2} a\left(c_{j+1}^{n}-c_{j-1}^{n}\right)+\frac{\lambda^{2} a^{2}}{2}\left(c_{j+1}^{n}-2 c_{j}^{n}+c_{j-1}^{n}\right) \\
& H_{j+1 / 2}=\frac{1}{2}\left(a\left(c_{j+1}+c_{j}\right)-\lambda a^{2}\left(c_{j+1}-c_{j}\right)\right)
\end{aligned}
$$

Truncation error

$$
\tau(\Delta t, h)=\mathcal{O}\left(\Delta t^{2}+h^{2}+h^{2} \Delta t\right) .
$$

Stability

Under the CFL condition, LW is strongly stable: $\left\|c^{n}\right\|_{\Delta, 2} \leq\left\|c^{n-1}\right\|_{\Delta, 2}$.
Using the von Neumann analysis: if $c_{j}^{0}=c_{0}\left(x_{j}\right)=\sum_{k=-\infty}^{\infty} \alpha_{k} e^{i k j h}$, then

$$
c_{j}^{n}=\sum_{k=-\infty}^{\infty} \alpha_{k} e^{i k j h} \gamma_{k}^{n} \text { with }\left|\gamma_{k}\right|=1-4 \lambda^{2} a^{2} \sin ^{4}\left(\frac{h k}{2}\right)\left(1-\lambda^{2} a^{2}\right) .
$$

Upwind - U

$$
\begin{aligned}
& c_{j}^{n+1}=c_{j}^{n}-\frac{\lambda}{2} a\left(c_{j+1}^{n}-c_{j-1}^{n}\right)+\frac{\lambda}{2}|a|\left(c_{j+1}^{n}-2 c_{j}^{n}+c_{j-1}^{n}\right) \\
& H_{j+1 / 2}=\frac{1}{2}\left(a\left(c_{j+1}+c_{j}\right)-|a|\left(c_{j+1}-c_{j}\right)\right)
\end{aligned}
$$

Truncation error

$$
\tau(\Delta t, h)=\mathcal{O}(\Delta t+h)
$$

Stability

If the CFL condition is satisfied, U is strongly stable

$$
\left\|c^{n}\right\|_{\Delta, 1} \leq\left\|c^{n-1}\right\|_{\Delta, 1}
$$

Function for solving linear transport equation

Input

- a propagation rate;
- I space interval, T final time;
- u0, u1 initial and inflow data;
- N number of subdivision of the interval $[0, L]$;
- lambda $\lambda=\Delta t / h$.

Output

- x grid points;
- t time;
- un-th row contains the values of c in $\left(x, t^{n}\right)$.

Exercise 1

Consider the equation:

$$
\begin{aligned}
& \frac{\partial c}{\partial t}+\frac{\partial c}{\partial x}=0 \quad x \in(-2,3), t \in(0,1.6] \\
& c(x, 0)= \begin{cases}1-|x| & |x| \leq 1 \\
0 & |x| \geq 1\end{cases} \\
& c(-2, t)=0 \quad t \in(0,1.6]
\end{aligned}
$$

- Solve the equation using LF with $h=0.1$ and $\lambda=0.8$.
- Compare the computed solution with the exact one.
- Use smaller values for h and the same value for λ.
- Compute the solution for $T=0.8$ with the same values of h and $\lambda=1.6$.
- Compute the solution with the other schemes and compare the computed solutions.

Exercise 2

For values of x in the interval $[-1,3]$ and t in $[0,2.4]$, solve the transport equation

$$
\frac{\partial c}{\partial t}+\frac{\partial c}{\partial x}=0
$$

with the initial data

$$
c(x, 0)= \begin{cases}\cos ^{2}(\pi x) & |x| \leq 1 / 2 \\ 0 & \text { otherwise }\end{cases}
$$

and the boundary data $c(-1, t)=0$. Use the four schemes for $h=1 / 10, h=1 / 20$, and $h=1 / 40$ as follows
a. Upwind with $\lambda=0.8$
b. FE/C with $\lambda=0.8$
c. LF with $\lambda=0.8$ and $\lambda=1.6$
d. LW with $\lambda=0.8$

How does the error decrease as the mesh gets finer?

Exercise 3

For values of x in the interval $[0,10]$ and t in $[0,10]$, solve the transport equation

$$
\frac{\partial c}{\partial t}+\frac{\partial c}{\partial x}=0
$$

with the initial data

$$
c(x, 0)= \begin{cases}\sin (2 \pi x) & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

and the boundary data $c(0, t)=0$.

