Sistemi lineari

Lucia Gastaldi

DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it

Indice

- Risoluzione di sistemi lineari
 - Risoluzione di sistemi lineari in Matlab
 - Metodi di risoluzione
 - Fattorizzazione

- 2 Analisi degli errori
 - Norme di vettore e di matrici
 - Numero di condizionamento

Ax=b

Tre casi possibili:

- Sistemi quadrati, m = n.
- Sistemi sovradeterminati, m > n.
- Sistemi sottodeterminati, m < n.

Come risolvere un sistema lineare con MATLAB

La risoluzione del sistema lineare si ottiene usando i simboli di divisione: **backslash** \ e **slash** /.

- $x = A \setminus b$ indica la soluzione di Ax = b, $x \in b$ vettori colonna.
- x = b/A indica la soluzione di xA = b, $x \in b$ vettori riga.

L'operatore **backslash** usa algoritmi differenti per trattare diversi tipi di matrici:

- Permutazioni di matrici triangolari.
- Matrici simmetriche e definite positive.
- Matrici quadrate, non singolari e piene.
- Matrici quadrate, non singolari e sparse.
- Sistemi rettangolari sovradeterminati.
- Sistemi rettangolari sottodeterminati.

Risoluzione di sistemi triangolari

Metodo di sostituzione in avanti

L matrice triangolare inferiore.

$$x_1 = \frac{b_1}{\ell_{11}}$$
 $x_i = \frac{b_i - \sum_{j=1}^{i-1} \ell_{ij} x_j}{\ell_{ii}}$ per $i = 2, ..., n$

Metodo di sostituzione all'indietro U matrice triangolare superiore.

$$x_n = \frac{b_n}{u_{nn}}$$

$$x_i = \frac{b_i - \sum_{j=i+1}^n u_{ij} x_j}{u_{ii}} \quad \text{per } i = n-1, \dots, 1$$

Algoritmo di eliminazione di Gauss

```
for k = 1, ..., n - 1
    for i = k + 1, \ldots, n
        m_{ik} = rac{a_{ik}^{(k)}}{a_{kk}^{(k)}} for j = k + 1, \dots, n
            a_{ii}^{(k+1)} = a_{ii}^{(k)} - m_{ik} a_{ki}^{(k)}
        end b_i^{(k+1)} = b_i^{(k)} - m_{ik} b_k^{(k)}
    end
end
```

Fattorizzazione LU

Teorema

Costruiamo le seguenti matrici:

$$L = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ m_{21} & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ m_{n1} & \cdots & m_{nn-1} & 1 \end{pmatrix}$$

$$U = \begin{pmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & \cdots & a_{2n}^{(2)} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & a_{nn}^{(n)} \end{pmatrix}.$$

Se tutti i minori principali di A sono non nulli, si ha LU = A.

Il comando [L,U]=miaLU(A) fornisce la fattorizzazione LU associata al metodo di eliminazione di Gauss.

Strategia di pivoting

Per evitare possibili divisioni per 0 e per rendere l'algoritmo di eliminazione (oppure l'algoritmo di fattorizzazione LU) stabili rispetto alla propagazione degli errori di arrotondamento si usa la **strategia di pivoting** che consiste nello scambio sistematico di righe opportune.

Il risultato della fattorizzazione LU è:

$$PA = LU$$

essendo *P* una **matrice di permutazione** che tiene conto degli scambi di righe avvenuti.

Algoritmo di eliminazione di Gauss con pivoting

```
for k = 1, ..., n-1
   cerco più piccolo p tale che |a_{pk}^{(k)}| = \max_{k \le i \le n} |a_{ik}^{(k)}|
   scambio la riga k con la riga p
   for i = k + 1, \ldots, n
      m_{ik} = \frac{a_{ik}^{(k)}}{a_{ik}^{(k)}}
       for i = k + 1, \dots, n
          a_{ij}^{(k+1)} = a_{ij}^{(k)} - m_{ik} a_{kj}^{(k)}
       end
       b_i^{(k+1)} = b_i^{(k)} - m_{ik}b_k^{(k)}
   end
end
```

Le funzioni MATLAB per la fattorizzazione

Funzione	Significato
lu	Fattorizzazione $PA = LU$.
chol qr	Fattorizzazione di Cholesky $A = R^{T}R$ con R triang. sup. Fattorizzazione $A = QR$.
schur	Decomposizione di Schur $A = UTU^H$.

Uso della function lu

Data la matrice $A \in \mathbb{R}^{n \times n}$, la function lu fornisce il risultato della fattorizzazione nelle seguenti forme:

- [L,U,P]=lu(A): fornisce le matrici L, U e P in modo che L*U=P*A.
- [L1,U]=lu(A):
 fornisce le matrici L1 e U in modo che L1*U=A. In questo caso la matrice L1 si ottiene dalla permutazione delle righe di L mediante P ossia I.1 = P⁻¹I.

Verificare il comportamento di lu sulla matrice:

$$A = \left(\begin{array}{ccc} 1 & 2 & -1 \\ 3 & 2 & 1 \\ 2 & -1 & 0 \end{array}\right)$$

e confrontare quanto ottenuto con la function miaLU.

Matrici di permutazione

Definizione

Una matrice di permutazione P è ottenuta dalla matrice identità scambiando le righe e le colonne. Su ciascuna riga e colonna si trova uno ed uno solo 1 mentre tutti gli altri elementi sono nulli.

$$P = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right)$$

Il prodotto P*A permuta le righe della matrice A. Il prodotto A*P permuta le colonne della matrice A. L'effetto della moltiplicazione per P può essere anche ottenuto usando il vettore $p=[4\ 1\ 3\ 2]$. I comandi P*A e A(p,:) hanno lo stesso effetto.

La matrice inversa è data da: $P^{-1} = P^{\top}$

Propagazione degli errori

Esercizio 1

Consideriamo al variare di $a \in \mathbb{R}$ la matrice A e il vettore b dati da:

$$A = \begin{pmatrix} 1 & 1 & 3 \\ 2 & 2+a & 20 \\ 3 & 6 & 4 \end{pmatrix} \qquad b = \begin{pmatrix} 3 \\ 20-a \\ 1 \end{pmatrix}$$

Dati i seguenti valori di *a*: a = 1, a = 0, $a = 0.5 \cdot 10^{-15}$,

- calcolare la fattorizzazione LU di A mediante la function miaLU;
- calcolare la differenza A LU:
- usare la fattorizzazione ottenuta per risolvere il sistema lineare Ax = b, la cui soluzione esatta è $x = (1, -1, 1)^{\top}$;
- ripetere la procedura usando le apposite function di Matlab per la fattorizzazione LU e la risoluzione dei due sistemi relativi alle matrici triangolari.

Riempimento delle matrici triangolari ottenute con LU

Esercizio 2

Si consideri la matrice $A \in \mathbb{R}^{25 \times 25}$ che ha i seguenti elementi:

$$a_{ii} = 1,$$
 per $i = 1, ..., 25$
 $a_{1j} = 1,$ per $j = 2, ..., 25$
 $a_{i1} = 1,$ per $i = 2, ..., 25$

Costruire la matrice usando prima il comando speye e poi correggendo la prima riga e la prima colonna.

Usare il comando 1u per ottenere le matrici L, U, P che danno la fattorizzazione della matrice.

Usando i comandi subplot e spy visualizzare la distribuzione degli elementi non nulli delle matrici A, L, U, P in una stessa figura.

Norma di vettore

Sia x un vettore di dimensione n, per $1 \le p \le \infty$, il comando norm(x,p) fornisce il valore della norma:

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Le norme più usate sono:

$$||x||_1 = \sum_{i=1}^n |x_i|$$
 $norm(x,1)$ $||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$ $norm(x,2) = norm(x)$ $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$ $norm(x,Inf)$

Norma di matrice

La moltiplicazione Ax può produrre un vettore con una norma completamente diversa da quella di x. La norma della matrice A si definisce come segue

$$||A|| = M = \max_{x \neq 0} \frac{||Ax||}{||x||}.$$

Valgono le seguenti proprietà:

$$\|\mathbb{I}\| = 1$$
 per \mathbb{I} matrice identità $\|Ax\| \le \|A\| \|x\|$ $\|AB\| \le \|A\| \|B\|$

norm(A,p) fornisce la norma di matrice per $p=1,2,\infty$:

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}| \quad ||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^n |a_{ij}|$$
$$||A||_2 = \sqrt{\rho(A^T A)}$$

essendo $\rho(A^{\top}A) = \max_i \sigma_i$, e σ_i autovalore di $A^{\top}A$.

Numero di condizionamento

Definizione

$$K(A) = ||A^{-1}|| \, ||A||$$

si dice numero di condizionamento della matrice A.

Teorema

Si consideri il sistema lineare Ax = b. Siano δA e δb perturbazioni di A e di b rispettivamente e sia $x + \delta x$ la soluzion del sistema lineare:

$$(A + \delta A)(x + \delta x) = b + \delta b.$$

Allora vale la seguente maggiorazione:

$$\frac{\|\delta x\|}{\|x\|} \leq \frac{K(A)}{1 - K(A)\|\delta A\|/\|A\|} \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|}{\|b\|}\right).$$

Numero di condizionamento

$$K(A) = ||A^{-1}|| \, ||A||$$

La norma ||A|| indica il rapporto massimo tra la norma del vettore Ax e quella di x.

Osserviamo che, ponendo Ay = x e $y = A^{-1}x$, si ha

$$||A^{-1}|| = \max_{x \neq 0} \frac{||A^{-1}x||}{||x||} = \max_{y \neq 0} \frac{||y||}{||Ay||} = \frac{1}{\min_{y \neq 0} \frac{||Ay||}{||y||}} = \frac{1}{m}$$

Il numero m indica il rapporto minimo tra la norma di Ax e quella di x. Di conseguenza

$$K(A) = \frac{\max_{x \neq 0} \frac{\|Ax\|}{\|x\|}}{\min_{x \neq 0} \frac{\|Ax\|}{\|x\|}}.$$

Il condizionamento in Matlab

- cond(A) o cond(A,2) calcola $K_2(A)$ (con la norma 2). Usa svd(A). Computazionalmente costoso, adatto a matrici piccole.
- cond(A,1) calcola $K_1(A)$ (con la norma 1). Usa inv(A). Meno lavoro che per cond(A,2).
- cond(A,Inf) calcola $K_{\infty}(A)$ (con la norma ∞). Usa inv(A). È lo stesso di cond(A',1).
- condest(A) stima $K_1(A)$. Usa lu(A) e un algoritmo recente di Higham e Tisseur. Adatto specialmente per matrici sparse e di grandi dimensioni.
- rcond(A) stima 1/K₁(A). Usa lu(A) e un algoritmo più vecchio sviluppato in LINPACK e LAPACK.

Esercizi

Esercizio 3

Dati

$$A = \begin{pmatrix} 1.2969 & 0.8648 \\ 0.2161 & 0.1441 \end{pmatrix}, \quad b = \begin{pmatrix} 0.8642 \\ 0.1440 \end{pmatrix},$$

calcolare la soluzione esatta del sistema Ax = b. Si considerino le seguenti perturbazioni $r_1 = [-10^{-8}, 10^{-8}]^{\top}$ e $r_2 = [10^{-8}, 10^{-8}]^{\top}$ al termine noto.

- Per ciascuna perturbazione calcolare la soluzione del sistema $A\hat{x}_i = b + r_i$, i = 1, 2 mediante il comando x=A\b.
- Calcolare l'errore relativo commesso, e confrontarlo con la perturbazione relativa del termine noto.
- Calcolare il numero di condizionamento di A.
- Verificare che il risultato ottenuto soddisfa la stima teorica.

Matrice mal condizionata

Esercizio 4

Si consideri il sistema lineare Ax = b con $A \in \mathbb{R}^{n \times n}$ matrice di Hilbert di elementi

$$a_{ij}=\frac{1}{i+j-1}, \quad i=1,\ldots,n,$$

e $b \in \mathbb{R}^n$ tale che la soluzione del sistema sia $x = (1, \dots, 1)^{\top}$.

- Calcolare con MATLAB la fattorizzazione LU con pivoting e risolvere il sistema al variare di n. Sia \hat{x} la soluzione calcolata.
- Calcolare il numero di condizionamento della matrice K.
- Riportare in uno stesso grafico in scala semilogaritmica le seguenti quantità al variare di n:
 - il numero di condizionamento:
 - l'errore relativo $E = ||x \hat{x}|| / ||x||$;
 - il residuo $||b A\hat{x}||/||b||$;
 - la stima dell'errore $K \| \ddot{b} A\hat{x} \| / \| b \|$.

Per calcolare le norme usare il comando norm.

Comandi utili per l'esercizio

- A=hilb(n) fornisce la matrice di Hilbert di dimensione $n \times n$.
- x=ones(n,1) genera il vettore colonna di dimensione n che ha tutte le componenti uguali a 1.
- b=A*x calcola il termine noto.
- xapp=A\b risolve il sistema lineare.
- err=norm(x-xapp)/norm(x) calcola l'errore relativo.
- r=b-A*xapp calcola il residuo.
- res=norm(r)/norm(b) calcola la norma del residuo rapportata alla norma del termine noto.
- K=cond(A) calcola il numero di condizionamento di A.

Suggerimento Per potere fare il grafico in scala semilogaritmica si devono creare i vettori err. res. K.