Equazioni e sistemi non lineari

Lucia Gastaldi

DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it

Indice

- Ricerca degli zeri di una funzione
 - Problema e definizioni
 - Bisezione
 - Metodo di Newton-Raphson
 - Test d'arresto
 - Algoritmo ed esercizi
 - Metodo delle secanti
 - Function di Matlab
- 2 Soluzione di sistemi non lineari
 - Il metodo di Newton-Raphson per sistemi
 - Problemi di minimo
- Gestione dell'output
- 4 Appendice

Zeri di funzione

Ricerca degli zeri di una funzione

Problema

Data $f:[a,b]\to\mathbb{R}$ si cerca $x\in[a,b]$ tale che f(x)=0.

Indichiamo con α uno zero di f.

Teorema

Supponiamo che la funzione $f:[a,b]\to\mathbb{R}$ sia continua in [a,b] e che $f(a) \cdot f(b) < 0$; allora esiste $\alpha \in (a, b)$ tale che $f(\alpha) = 0$.

Metodo di bisezione

Data una funzione $f:[a,b]\to\mathbb{R}$ continua, con $f(a)\cdot f(b)<0$, il metodo di bisezione individua un intervallo di data ampiezza nel quale è contenuto lo zero α della funzione.

Algoritmo di bisezione

Fintanto che l'ampiezza dell'intervallo è superiore alla tolleranza desiderata si eseguono i seguenti passi:

- 1. si calcola il punto medio c = (a + b)/2 dell'intervallo corrente;
- 2. si valuta f(c);
- 3. se f(c) = 0, allora c è lo zero cercato; stop;
- 4. altrimenti se $f(a) \cdot f(c) < 0$ allora b = c; si torna all'inizio del ciclo;
- 5. altrimenti a = c; si torna all'inizio del ciclo.

Stima dell'errore

Nell'intervallo corrente l'errore $|\alpha - c| \le (b - a)/2$. Dopo k iterazioni l'ampiezza dell'intervallo corrente è data dall'ampiezza dell'intervallo di partenza diviso 2^k .

Function bisezione

Scrivere un **M-file** di tipo function per trovare uno zero di una funzione con il metodo delle bisezioni. La riga di definizione è la seguente:

```
function [zero,fval,iter]=bisezione(f,a,b,tol)
```

Input

```
f nome della funzione;
a,b estremi dell'intervallo;
```

tol tolleranza desiderata.

Output

```
zero lo zero della funzione trovato;
fval valore di f nello zero calcolato;
```

iter iterazioni eseguite.

Esercizio 1

Usare la function bisezione per trovare uno zero delle seguenti funzioni con tolleranza tol=eps. Rappresentare la funzione e marcare sul grafico lo zero trovato.

$$f(x) = x^{2} - 2, \quad x \in [0, 2]$$

$$f(x) = 3x - 1, \quad x \in [0, 1]$$

$$f(x) = \arctan(x), \quad x \in [-1, 1]$$

$$f(x) = \sin(x) - \cos(2x), \quad x \in [-\pi, \pi]$$

$$f(x) = \sin(x) - \cos(2x), \quad x \in [0, 10004]$$

Risultati

- 1. zero=1.4142, fval= 8.8818e-16, iter=52
- 2. zero=0.3333, fval=4.4409e-16, iter=51
- 3. zero=0, fval=0, iter=1
- 4. La funzione assume negli estremi lo stesso valore. Se si cambia l'intervallo di partenza in [-2,2] si trova zero=0.5236, fval= -4.9960e-16, iter=53
- 5. zero=4.6438e+03, fval=-2.0687e-12, iter=65

Metodo di bisezione con test sull'errore relativo

Modificare la function bisezione in modo di considerare il seguente test d'arresto

$$\frac{b-a}{\max(|a|,|b|)} < \texttt{tol}$$

Ripetere le prove dell'esercizio precedente.

Risultati

- 1. zero=1.4142, fval=4.4409e-16, iter=53
- 2. zero=0.3333, fval=0, iter=53
- 3. zero=0, fval=0, iter=1
- 4. La funzione assume negli estremi lo stesso valore. Se si cambia l'intervallo di partenza in [-2,2] si trova zero=0.5236, fval=-1.6653e-16, iter=55
- 5. zero=4.6438e+03, fval=2.9432e-13, iter=53

Ordine di convergenza di un metodo iterativo

Definizione

Si dice che un metodo iterativo è **convergente di ordine** p > 1 se vale

$$\lim_{k\to\infty}\frac{|\alpha-x_{k+1}|}{|\alpha-x_k|^p}=C\neq 0.$$

Si dice che un metodo iterativo converge linearmente se esiste un numero positivo 0 < C < 1 tale che

$$\lim_{k\to\infty}\frac{|\alpha-x_{k+1}|}{|\alpha-x_k|}=C.$$

Si dice che un metodo iterativo **converge superlinearmente** se vale

$$\lim_{k\to\infty}\frac{|\alpha-x_{k+1}|}{|\alpha-x_k|}=0.$$

Metodo di Newton-Raphson

Supponiamo di avere calcolato il valore x_k .

La migliore approssimazione lineare della funzione f nel punto x_k è data dalla retta tangente

$$\mathbf{t}_k(x) = f(x_k) + f'(x_k)(x - x_k).$$

Ponendo $\mathbf{t}_k(x) = 0$, si ricava il nuovo punto della successione x_{k+1} .

Iterata di Newton-Raphson

Dato x_0 ,

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Teorema di convergenza locale quadratica

Teorema

Sia $f:[a,b]\to\mathbb{R}$ una funzione di classe \mathbb{C}^2 . Sia α tale che

$$f(\alpha) = 0, \qquad f'(\alpha) \neq 0.$$

Allora esiste $\eta > 0$ tale che se il punto iniziale x_0 soddisfa

$$|\alpha - x_0| \le \eta$$

allora si ha:

- 1. Per ogni $k \in \mathbb{N}$, $|\alpha x_k| < \eta$;
- $2. \lim_{k\to\infty} x_k = \alpha;$
- 3. $\lim_{k \to \infty} \frac{x_{k+1} \alpha}{(x_k \alpha)^2} = \frac{f''(\alpha)}{2f'(\alpha)}$.

Test d'arresto

Si deve trovare un modo per imporre che l'errore sia inferiore ad una tolleranza prestabilita, ossia tale che

$$\frac{|\alpha - x_k|}{|\alpha|} \le \mathsf{toll}, \quad \mathsf{oppure} \ |\alpha - x_k| \le \mathsf{toll} \ \mathsf{se} \ \alpha = \mathsf{0}.$$

Due possibilità:

$$|f(x_k)| \le \text{toll}$$

non efficiente se $|f'(\alpha)| \approx 0$ oppure $|f'(\alpha)| >> 1$.

$$|x_{k+1} - x_k| \le \text{toll}$$
 efficiente se il metodo converge superlinearmente.

Algoritmo di Newton-Raphson

- 1. Dati f, f', x_0 , toll e nmax;
- 2. valuta $y = f(x_0)$ e la derivata $dy = f'(x_0)$;
- 3. inizializza $\delta = 1$ e *iter* = 0;
- 4. Se $|\delta| \le toll$ il test d'arresto è verificato, x_0 è la soluzione cercata; stop.
- 5. Se *iter* > *nmax*, è stato raggiunto il numero massimo di iterazioni senza arrivare a convergenza; stop.
- 6. Altrimenti:
 - 6.1 calcola $\delta = -y/dy$;
 - 6.2 aggiorna $x_0 = x_0 + \delta$.
 - 6.3 valuta $y = f(x_0)$ e la derivata $dy = f'(x_0)$;
 - 6.4 incrementa l'indice di iterazione iter = iter + 1.
- 7. Ripeti da 4.

Function newton

Scrivere un programma di tipo function per implementare il metodo di Newton, con la seguente riga di definizione:

function [zero,fz,iter]=newton(f,df,x0,toll,Nmax)

Innut

111600	
f	function che contiene l'espressione della funzione f ;
df	function che contiene l'espressione della derivata f' ;
x 0	punto iniziale per l'iterazione;
toll	tolleranza desiderata;
Nmax	numero massimo di ietrazioni da eseguire;
Output	
zero	soluzione cercata;
fz	valore di f nello zero calcolato;
iter	numero di iterazioni utilizzate.

Esercizi

Esercizio 2

Testare la function newton per determinare gli zeri delle funzioni dell'Esercizio 1.

Esercizio 3

La funzione

$$f(x) = e^x - 2x^2$$

ha tre zeri, $\alpha_1 < 0$, α_2 e α_3 positivi.

- Fare il grafico della funzione.
- Per i = 1, 2, 3 trovare un valore di x_0 in modo che il metodo di Newton implementato converga a α_i .
- Marcare gli zeri trovati sul grafico della funzione.

Esercizio 4

Ricerca degli zeri di una funzione

Si consideri la funzione

$$f(x) = x - \frac{3\sin(3x)}{x}$$
 $x \in [0, 6].$

La funzione e la sua derivata sono implementate nelle function sin3 e dsin3 rispettivamente.

Usare la function newton per calcolare lo zero di f e rappresentare il procedimento iterativo con le seguenti scelte del dato iniziale $x_0 = 0.1$, $x_0 = 2$, $x_0 = 2.1$, $x_0 = 2.2$, $x_0 = 2.4$, $x_0 = 2.5$ e $x_0 = 3$.

Lanca de la constitución de la c

Gestione dell'output

Convergenza del metodo di Newton

Modificare la function newton che implementa l'algoritmo di Newton-Raphson con la seguente riga di dichiarazione:

```
[zero,fz,iter,xk]=newton(f,df,x0,tol,Niter)
```

Input	
f	function che contiene l'espressione della funzione f ;
df	function che contiene l'espressione della derivata f' ;
x0	punto iniziale per l'iterazione;
tol	tolleranza desiderata;
Niter	numero massimo di ietrazioni da eseguire.
Output	
zero	soluzione cercata;
fz	valore di f nello zero calcolato;
iter	numero di iterazioni utilizzate;
xk	vettore delle approssimazioni successive (opzionale).

Verifica dell'ordine di convergenza

Se il metodo di Newton converge quadraticamente si verifica che

$$\lim_{k \to \infty} \frac{|x_{k+1} - x_k|}{|x_k - x_{k-1}|^2} = \frac{|f''(\alpha)|}{|2f'(\alpha)|}.$$

Quindi per verificare l'andamento dell'errore si può riportare in un grafico in scala semilogartimica (semilogy) la differenza fra due iterate successive. Se l'ordine di convergenza è quadratico si potrà vedere che l'errore decresce rapidamente.

Si può verificare questo comportamento anche dai valori della frazione nel limite scritto sopra.

Esercizio 5

Usare la function newton per calcolare gli zeri delle seguenti funzioni, con x_0 assegnato:

Soluzione di sistemi non lineari

$$f(x) = \sin x - \cos 2x$$
 $x_0 = 1$
 $f(x) = x^3 - 7x^2 + 11x - 5$ $x_0 = 2 \text{ e } x_0 = 7$
 $f(x) = x^4 - 12x^3 + 47x^2 - 60x + 24$ $x_0 = 0 \text{ e } x_0 = 2$

Fare un grafico di ciascuna funzione. Riportare in scala semilogaritmica la differenza fra due successive iterate e dedurre se la convergenza è quadratica o lineare.

Esercizio 6

Si consideri l'equazione $2x^4 - 11x^3 + 21x^2 - 16x + 4 = 0$.

- 1. Plottare la funzione nell'intervallo [0, 3].
- 2. Trovare gli zeri mediante il metodo di Newton usando i seguenti valori iniziali: $x_0 = 0.75, 1.25, 1.75, 2.25, 2.75$.
- 3. Per ciascuna radice trovata dire l'ordine di convergenza.

Soluzione Esercizio 5

```
tol=1e-10, nmax=20
f(x) = \sin x - \cos 2x \ x_0 = 1
II metodo converge in 5 iterazioni zero = 5.235988e-01 fval =
-1.665335e-16 Convergenza quadratica
f(x) = x^3 - 7x^2 + 11x - 5
Se x_0 = 2 il metodo non converge nel massimo numero di iterazioni
Residuo finale = -1.869616e-12 Convergenza lineare
Se x_0 = 7 il metodo converge in 7 iterazioni zero =
5.000000e+00 fval = -7.105427e-15 Convergenza quadratica
f(x) = x^4 - 12x^3 + 47x^2 - 60x + 24
Se x_0 = 0 il metodo converge in 9 iterazioni zero =
8.883058e-01 fval = 0.000000e+00 Convergenza quadratica
Se x_0 = 2 il metodo converge in 8 iterazioni zero =
1.000000e+00 fval = 0.000000e+00 Convergenza quadratica
```

Soluzione Esercizio 6

```
f(x) = 2x^4 - 11x^3 + 21x^2 - 16x + 4 \text{ tol=1e-10}, \text{ nmax=20}
Se x_0 = 0.75 il metodo converge in 10 iterazioni zero =
5.000000e-01 fval = 0.000000e+00 Convergenza quadratica
Se x_0 = 1.25 II metodo converge in 5 iterazioni zero =
1.000000e+00 fval = 0.000000e+00 Convergenza cubica
Se x_0 = 1.75, x_0 = 2.25, x_0 = 2.75 il metodo non converge nel
massimo numero di iterazioni con residui finali = 4.973799e-14,
3.339551e-13, 8.292034e-12 Convergenza lineare
```

Esempi

Un esempio perverso

Usare la function newton per calcolare lo zero della seguente funzione:

$$f(x) = \operatorname{sign}(x)\sqrt{|x|}, \quad x \in \mathbb{R}.$$

Osservare che per qualunque scelta del dato iniziale x_0 la successione è oscillante.

Applicare il metodo di Newton alla ricerca dello zero della funzione $f(x) = \arctan(x) \text{ con } x_0 = 0.3, 2.$

Usare il metodo di Newton per trovare il valore critico di x_0 per cui $x_1 = -x_0$. Chiamare x_c tale valore.

Verificare, usando la function newton, che il metodo di Newton applicato alla funzione $f(x) = \arctan(x)$:

- converge per $x_0 < x_c$;
- diverge per $x_0 \ge x_c$;
- è oscillante per $x_0 = x_c$.

Metodo delle secanti

Supponiamo di avere calcolato il valore x_k .

Nel caso in cui non si disponga della derivata di f oppure il costo del calcolo sia eccessivo si può considerare la secante che passa per $(x_k, f(x_k)) \in (x_{k-1}, f(x_{k-1}))$:

$$\mathbf{s}_k(x) = f(x_k) + \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}(x - x_k).$$

Ponendo $\mathbf{s}_k(x) = 0$, si ricava il nuovo punto della successione x_{k+1} .

Iterata delle secanti

Dati x_0 e x_1

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k).$$

Teorema di convergenza locale superlineare

Teorema

Ricerca degli zeri di una funzione

Sia $f:[a,b]\to\mathbb{R}$ una funzione di classe \mathbb{C}^2 . Sia α tale che

$$f(\alpha) = 0, \qquad f'(\alpha) \neq 0.$$

Allora esiste $\eta > 0$ tale che se il punto iniziale x_0 soddisfa $|\alpha - x_0| \le \eta$ allora si ha:

- 1. Per ogni $k \in \mathbb{N}$, $|\alpha x_k| < \eta$;
- 2. $\lim x_k = \alpha$;
- 3. $\lim_{k \to \infty} \frac{\alpha x_{k+1}}{(\alpha x_k)(\alpha x_{k-1})} = -\frac{f''(\alpha)}{2f'(\alpha)}$
- 4. $\lim_{k \to \infty} \frac{|\alpha x_{k+1}|}{|\alpha x_{k}|^p} = M^{-(1+1/p)}$

con
$$p = (1 + \sqrt{5})/2$$
 e $M = |f''(\alpha)|/(2|f'(\alpha)|)$.

Algoritmo delle secanti

- 1. Dato $x_0 e x_1$;
- 2. valuta $f_0 = f(x_0)$ e $f_1 = f(x_1)$.
- 3. Se il test d'arresto è verificato, x_1 è la soluzione cercata; stop.
- 4. Altrimenti:
 - 3.1 calcola $dy = (f_1 f_0)/(x_1 x_0)$;
 - 3.2 calcola $\delta = -f_1/dy$;
 - 3.3 aggiorna $x_0 = x_1$, $x_1 = x_1 + \delta$;
 - 3.4 aggiorna $f_0 = f_1$;
 - 3.5 valuta $f_1 = f(x_1)$.
- 5. Ripeti da 3.

Function secanti

La **function** secanti.m implementa l'algoritmo delle secanti con la seguente riga di dichiarazione:

[zero,fz,iter]=secanti (f,x0,x1,tol,Nit)

Input	
f	function che contiene l'espressione della funzione f ;
x0,x1	dati iniziali per l'iterazione;
tol	tolleranza desiderata;
Nit	numero massimo di ietrazioni da eseguire;
Output	
zero	soluzione cercata;
fz	valore di f nello zero calcolato;
iter	numero di iterazioni utilizzate;

Esercizio 7

Usare la function secanti per risolvere gli esercizi 5 e 6, scegliendo lo stesso valore di x0 e x1 = x0 + 0.5. In caso di non convergenza, modificare opportunamente il valore di x1.

Soluzione Esercizio 7 - Funzioni Es. 5

```
tol=1e-10, nmax=20 p = (1 + \sqrt{5})/2
f(x) = \sin x - \cos 2x \ x_0 = 1 \ e \ x_1 = 1.5
II metodo converge in 8 iterazioni zero = 5.235988e-01 fval =
1.110223e-16 Convergenza di ordine p
f(x) = x^3 - 7x^2 + 11x - 5
Se x_0 = 2 e x_1 = 2.5 il metodo non converge nel massimo numero
di iterazioni Residuo finale = -2.068380e-08 Convergenza lineare
Se x_0 = 7 e x_1 = 7.5 il metodo converge in 10 iterazioni zero =
5.000000e+00 \text{ fval} = -2.131628e-14
Convergenza di ordine p
f(x) = x^4 - 12x^3 + 47x^2 - 60x + 24
Se x_0 = 0 e x_1 = 0.5 il metodo converge in 12 iterazioni
zero = 8.883058e-01 fval = 7.105427e-15
Convergenza di ordine p
Se x_0 = 2 e x_1 = 2.5 dopo 11 iterazioni si trova la soluzione esatta
zero = 1.000000e+00 fval = 0.000000e+00
```

Soluzione Esercizio 7 - Funzioni Es. 6

```
f(x) = 2x^4 - 11x^3 + 21x^2 - 16x + 4 \text{ tol=1e-10}, \text{ nmax=20}
Se x_0 = 0.75 e x_1 = x_0 + 0.5 dopo 6 iterazioni si trova la soluzione
esatta zero = 1.000000e+00 fval = 0.000000e+00
Per individuare la radice \alpha = 0.5 scelgo x_0 = 0.4 e x_1 = 0.6
II metodo converge in 9 iterazioni zero = 5.000000e-00 fval=
8.881784e-16
Se x_0 = 1.25 II metodo converge in 5 iterazioni zero =
1.000000e+00 \text{ fval} = 0.000000e+00
Se x_0 = 1.75, il metodo non converge nel massimo numero di
iterazioni Residuo finale = 2.599424e-01
Se x_0 = 2.25 e x_1 = x_0 + 0.5 dopo 34 iterazioni si trova la
soluzione esatta zero = 2.000000e+00 fval = 0.000000e+00
Se x_0 = 2.75 e x_1 = x_0 + 0.5 dopo 42 iterazioni si trova la
soluzione esatta zero = 2.000000e+00 fval = 0.000000e+00
```

fzero

Calcola gli zeri di una funzione reale di variabile reale con la seguente sintassi

$$[x,fval] = fzero(fun,x0)$$

[x,fval]=fzero(@fun,x0) se fun è una function

Input	
fun	function che contiene la funzione f
x0	dato iniziale
Output	
X	approssimazione dello zero calcolato
fval	valore di f in x .

Si possono ottenere delle informazioni complete sulle iterazioni usando il comando

```
[x,fval]=fzero(@fun,x0,optimset('disp','iter'))
```

Algoritmo di Dekker-Brent

- Cerca un intervallo [a, b] in modo che f(a)f(b) < 0.
- Usa un passo delle secanti per trovare c.
- Ripete i passi seguenti finché $|b-a| < \varepsilon |b|$ o f(b) = 0.
 - Ordina a. b e c in modo tale che:

$$f(a)f(b) < 0$$
, $|f(b)| < |f(a)|$, c è il valore precedente di b .

- Se $c \neq a$, usa un passo IQI (Inverse Quadratic Interpolation).
- Se c = a, usa il passo delle secanti.
- Se IQI o le secanti forniscono un valore interno a [a, b], lo accetta.
- Altrimenti, usa il metodo delle bisezioni.

Utilizzo di fzero

fornisce il valore della funzione fun [x,fval]=fzero(fun,x0) nello zero x.

[x,fval,exitflag]=fzero(fun,x0) fornisce un valore exitflag che indica l'esito di fzero

Valore	Esito
1	convergenza verso la soluzione x
-1	l'algoritmo è interrotto da un output function
-3	sono stati trovati valori NaN o Inf
-4	sono stati trovati valori complessi durante la ricerca
	di un intervallo con cambio di segno
-5	fzero potrebbe essere arrivata a convergenza in un
	punto singolare
-6	fzero non trova un intervallo con cambio di segno.

Esercizio 8

Usare la function fzero per risolvere gli esercizi 5 e 6, scegliendo gli stessi valori iniziali per x0 e confrontare i risultati ottenuti con il metodo di Newton.

Soluzione Esercizio 8 - Funzioni Es. 5

$$f(x) = \sin x - \cos 2x \ x_0 = 1 \ e \ x_1 = 1.5$$

z = 0.5236 fz = 3.8858e-16

intervaliterations: 10 iterations: 6 funcCount: 26

$$f(x) = x^3 - 7x^2 + 11x - 5$$

Se $x_0 = 2$ z = 5 fz = 0

intervaliterations: 13 iterations: 9 funcCount: 36

Se
$$x_0 = 7 z = 5 fz = 0$$

intervaliterations: 8 iterations: 7 funcCount: 23

$$f(x) = x^4 - 12x^3 + 47x^2 - 60x + 24$$

Se $x_0 = 0$ z = 0.8883 fz = 0

intervaliterations: 11 iterations: 11 funcCount: 34

Se $x_0 = 2$ Exiting fzero: aborting search for an interval containing a sign change because NaN or Inf function value encountered during search. (Function value at -1.48214e+77 is Inf.) Check function or try again with a different starting value.

intervaliter: 522 iterations: 0 funcCount: 1044

Soluzione Esercizio 8 - Funzioni Es. 6

```
f(x) = 2x^4 - 11x^3 + 21x^2 - 16x + 4 \text{ tol=1e-10}, \text{ nmax=20}

Se x_0 = 0.75 \text{ z} = 0.5000 \text{ fz} = 0

intervaliterations: 9 iterations: 9 funcCount: 27

Se x_0 = 1.25 \text{ z} = 1.0000 \text{ fz} = 0

intervaliterations: 7 iterations: 4 funcCount: 18

Se x_0 = 1.75 \text{ z} = 1.0000 \text{ fz} = 0

intervaliterations: 9 iterations: 5 funcCount: 23

Se x_0 = 2.25 \text{ z} = 1.0000 \text{ fz} = 0

intervaliterations: 10 iterations: 6 funcCount: 26

Se x_0 = 2.75 \text{ z} = 1.0000 \text{ fz} = 0

intervaliterations: 10 iterations: 4 funcCount: 24
```

Il metodo di Newton-Raphson per sistemi

Consideriamo una funzione a valori vettoriali $F: A \to \mathbb{R}^n$ con $A \subseteq \mathbb{R}^n$:

$$F(x) = \begin{cases} f_1(x_1, x_2, \dots, x_n) \\ f_2(x_1, x_2, \dots, x_n) \\ \dots \\ f_n(x_1, x_2, \dots, x_n) \end{cases}$$

Problema

Trovare $\mathbf{x} = (x_1, x_2, \dots, x_n) \in A$ tale che $F(\mathbf{x}) = 0$.

l inearizzazione

Per semplicità consideriamo n=2 quindi abbiamo il sistema:

$$\begin{cases} f(x,y) = 0 \\ g(x,y) = 0 \end{cases}$$

Supponiamo di essere arrivati a calcolare un approssimazione (x_k, y_k) e consideriamo l'approssimazione di f e g con i piani tangenti nel punto (x_k, y_k) :

$$\begin{cases} f(x,y) \approx f(x_k, y_k) + f_x(x_k, y_k)(x - x_k) + f_y(x_k, y_k)(y - y_k) \\ g(x,y) \approx g(x_k, y_k) + g_x(x_k, y_k)(x - x_k) + g_y(x_k, y_k)(y - y_k) \end{cases}$$

Iterazione del metodo di Newton-Raphson

La nuova approssimazione si ottiene come

$$x_{k+1} = x_k + \delta_x \qquad y_{k+1} = y_k + \delta_y$$

dove il vettore $\delta = (\delta_x, \delta_y)^T$ è la soluzione del sistema

$$J(x_k,y_k)\delta=-F(x_k,y_k)$$

e

$$J(x_k, y_k) = \begin{pmatrix} f_x(x_k, y_k) & f_y(x_k, y_k) \\ g_x(x_k, y_k) & g_y(x_k, y_k) \end{pmatrix}$$
$$F(x_k, y_k) = \begin{pmatrix} f(x_k, y_k) \\ g(x_k, y_k) \end{pmatrix}$$

Algoritmo di Newton-Raphson

Newton_sist.m

- 1. Dato \mathbf{x}_0 .
- 2. Se il test d'arresto è verificato, \mathbf{x}_0 è la soluzione cercata; stop.
- 3. Altrimenti:
 - 3.1 valuta $Y = F(\mathbf{x}_0)$ e lo Jacobiano $A = J(\mathbf{x}_0)$;
 - 3.2 risolvi $A\delta = -Y$;
 - 3.3 aggiorna $\mathbf{x}_0 = \mathbf{x}_0 + \delta$.
- 4. Ripeti da 2.

Nota bene

F è il nome di una function che fornisce il valore di F in un vettore colonna di dimensione n.

J è il nome di una function che fornisce il valore dello Jacobiano come array nxn.

Function newtonsys

La function newtonsys risolve un sistema non lineare mediante il seguente comando:

[z,fz,iter] = newtonsys (@f,@fd,x0,tol,Nit)

Input	
f	function che contiene la funzione f (vettore colonna);
df	function che contiene lo Jacobiano \hat{J} (matrice);
x 0	punto iniziale per l'iterazione (vettore colonna);
tol	tolleranza desiderata;
Nit	numero massimo di ietrazioni da eseguire;
Output	
zero	soluzione cercata;
fz	valore di f nello zero calcolato;
iter	numero di iterazioni utilizzate;

fsolve

Risolve i sistemi di equazioni non lineari in più variabili.

Appartiene al toolbox optim.

Input	
fun	nome della function che contiene la funzione f fun accetta in input un vettore x e dà in output il vettore dei valori di f valutata in x .
x0	dato iniziale
Output	
x	approssimazione dello zero calcolato
fval	valore di fun in x.

Opzioni per fsolve

risolve il sistema con i parametri di default sostituiti da quelli dichiarati nella struttura options. options viene creato con il comando optimset. Vedere optimset per i dettagli. Le opzioni più usate sono: Display, TolX, TolFun, Diagnostics, DerivativeCheck, Jacobian, MaxFunEvals, MaxIter, PlotFcns, OutputFcn.

Per usare lo Jacobiano la function FUN deve dare come output sia il valore di f che quello del suo jacobiano.

Opzioni per fsolve

```
[x,fval,exitflag,output]=fsolve(@fun,x0,options)
fornisce in output le seguenti informazioni:
exitflag ha valore da -4 a 4. Se l'algoritmo è arrivato a
convergenza correttamente exitflag=1.
output è una struttura del seguente tipo:
output =
        iterations: 5
         funcCount: 18
         algorithm: 'trust-region dogleg'
    firstorderopt: 1.6919e-07
           message: [1x76 char]
```

Esercizi

Esercizio 9

Applicare il metodo di Newton-Raphson per trovare gli zeri delle seguenti funzioni:

$$F_1(x,y) = \begin{pmatrix} x+y-3 \\ x^2+y^2-9 \end{pmatrix}$$
 radici: (0,3) (3,0) $x_0 = (1,5), x_0 = (2,3)$

$$F_2(x,y) = \begin{pmatrix} x^2 + y^2 - 2 \\ e^{x-1} + y^3 - 2 \end{pmatrix}$$
 radice: (1,1)
$$x_0 = (1.5,2), \ x_0 = (2,3)$$

Trovare la soluzione usando il metodo di Newton (newtonsys) e la function di Matlab fsolve. In questo caso confrontare cosa si ottiene fornendo anche il valore dello Jacobiano.

Problemi di minimo

Esercizio 10

Usare la function newtonsys per trovare il minimo delle seguenti funzioni di più variabili:

$$f(x,y) = 10x^{2} + y^{2} \qquad \alpha = (0,0) \text{ x0=[1;2]}$$

$$f(x,y) = (x-2)^{4} + (x-2)^{2}y^{2} + (y+1)^{2}$$

$$\alpha = (2,-1) \text{ x0=[1;1]}$$

$$f(x,y) = x^{4} + (x+y)^{2} + (e^{x}-1)^{2}$$

$$\alpha = (0,0) \text{ x0=[1;1], [-1;3]}$$

$$f(x,y) = 100(y-x^{2})^{2} + (1-x)^{2}$$

$$\alpha = (1,1) \text{ x0=[-1.9;2]}$$

Rappresentare le superfici corrispondenti alle funzioni date e le loro curve di livello.

Ricerca degli zeri di una funzione

segue

Risolvere i precedenti problemi di minimo usando la function di Matlab fminsearch mediante il seguente comando

```
x = fminsearch(fun.x0)
```

essendo fun il nome della function che contiene la funzione e x0 il punto iniziale. Per ulteriori dettagli sull'uso di questa function dare il comando help fminsearch.

Esercizio facoltativo

Radici terze dell'unità

- Risolvere in campo complesso l'equazione $z^3 = 1$. Tre radici: $z_0 = 1$, $z_1 = -0.5 + i \sin(2\pi/3)$ e $z_3 = -0.5 i \sin(2\pi/3)$.
- Posto z = x + iy, trasformare l'equazione data in un sistema di due equazioni reali relative alla parte reale e al coefficiente dell'immaginario.
- Trovare le soluzioni mediante il metodo di Newton-Raphson.
- Considerare nel piano complesso un quadrato di lato L. Suddividere tale quadrato in n^2 quadratini. Utilizzare il centro di ciascun quadratino come x_0 per la risoluzione con il metodo di Newton-Raphson. Colorare il quadratino corrispondente
 - di rosso se la radice trovata è z_0 ,
 - di blu se la radice trovata è z_1 ,
 - di verde se la radice trovata è z_2 .

```
disp(stringa di caratteri)
```

visualizza la stringa di caratteri sullo schermo

```
fprintf(fid, formato, variabili)
```

scrive in un file *fid* il valore delle variabili con il formato assegnato. Se *fid* manca l'output è inviato sullo schermo.

```
stringa=sprintf(formato, variabili)
```

indirizza su una stringa di testo stringa l'output. Per visualizzare poi si usa disp(stringa).

Formato

Codice	Azione
%s	formato stringa
%d	formato senza parte frazionaria
%f	formato numero decimale
%e	formato esponenziale
%g	formato in forma compatta usando %f o %e
\n	inserisce carattere di ritorno a capo
\t	inserisce carattere di tabulazione

Esempio

Valore	%6.3f	%6.3 e	%6d
2	2.000	2.000e+00	2
0.02	0.020	2.000e-02	2.000000e-02
200	200.000	2.000e+02	200
sqrt(2)	1.414	1.414e+00	1.414214e+00
sqrt(2)/10	0.141	1.414e-01	1.414214e-01

Esempio

```
% tabella.m
% Realizza una tabella di valori
% del seno e del coseno
n=input('Inserisci il numero di valori:');
x=linspace(0,pi,n);
c=cos(x):
s=sin(x);
disp('----')
fprintf('k\t x(k)\t cos(x(k))\t sin(x(k))\n');
disp('----')
fprintf('%d\t %3.2f\t %6.5f\t %6.5f\n',[1:n;x;c;s]);
```

Uso del file tabella.m

>> tabella
>> Inserisci il numero di valori: 5

k	x(k)	cos(x(k))	sin(x(k))
1	0.00	1.00000	0.00000
2	0.79	0.70711	0.70711
3	1.57	0.00000	1.00000
4	2.36	-0.70711	0.70711
5	3.14	-1.00000	0.00000

Nell'esempio i valori del seno e del coseno sono contenuti in vettori riga.

nargin

La function **nargin** conta i parametri in input di una function. Può servire per rendere più flessibile l'uso di una function.

```
Esempio - nargin
```

Nella function newton si può passare come dato anche il valore dello zero esatto per fare l'analisi dell'errore e della convergenza.

Uso la seguente riga di dichiarazione:

```
function[zero,fz,iter] = newton(f,fd,x0,toll,Niter,output,p)
```

Nel programma per valutare l'ordine di convergenza uso le seguenti istruzioni:

```
if nargin==5
output=0; p=2
elseif nargin==6
p=2
end
```

e poi procedo con il calcolo del rapporto che dà la convergenza.

nargout

La function nargout conta i parametri in output di una function. Può servire per rendere più flessibile l'uso di una function.

Esempio - nargout

Si può prevedere che usando la function newton si voglia conoscere tutta la successione dei valori ottenuti, più spesso interessano solo il valore dello zero, quello della f ed il numero delle iterazioni.

Uso comunque la seguente riga di dichiarazione: function [zero,fz,iter,xk,fk]=newton (f,fd,x0,toll,Niter)

Inserisco nel programma prima della costruzione dei vettori xk e fk il seguente controllo:

```
if nargout>=4
 xk=....: fk=....
end
```

Se uso il comando [zero,fz,iter]=newton(f,fd,x0,toll,Niter) la successione dei valori ottenuti non verrà memorizzata.

Attenzione le variabili in output devono comunque essere assegnate.