Hyperbolic Partial Differential Equations

Lucia Gastaldi

DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it

Outline

1 Overview of linear transport equation

2 Finite difference schemes

3 Exercises

Linear transport equation on \mathbb{R}

Problem

Find $c(x,t): \mathbb{R} \times [0,T] \to \mathbb{R}$ such that

$$\frac{\partial c}{\partial t} + a \frac{\partial c}{\partial x} = 0 \quad x \in \mathbb{R}, \ t \in (0, T]$$
$$c(x, 0) = c_0(x) \quad x \in \mathbb{R}.$$

Characteristic lines

For all $x_0 \in \mathbb{R}$, we consider the ordinary differential equation

$$\frac{dx}{dt}(t) = a, \ t \in (0, T], \qquad x(0) = x_0.$$

The curves x(t) are the characteristic lines of the transport equation.

Exact solution
$$c(x, t) = c_0(x - at)$$

Inflow boundary

For a > 0 the characteristic lines propagate from the left to the right. inflow boundary $x_{in} = 0$.

For a < 0 the characteristic lines propagate from the right to the left. inflow boundary $x_{in} = L$.

Linear transport equation on bounded domains

Problem

Find
$$c(x,t):[0,L]\times[0,T]\to\mathbb{R}$$
 such that
$$\frac{\partial c}{\partial t}+a\frac{\partial c}{\partial x}=0\quad x\in(0,L),\ t\in(0,T]$$

$$c(x,0)=c_0(x)\quad x\in(0,1)$$

$$c(x_{in},t)=c_1(t)\quad t\in(0,T].$$

Exact solution

$$c(x,t) = \begin{cases} c_0(x-at) & \text{if } 0 < x-at < L \\ c_1(t-x/a) & \text{if } x-at < 0 \text{ or } x-at > L \end{cases}$$

The finite difference method

- time step Δt
- mesh size h (for bounded domains h = L/N)
- grid points $(x_j, t^n) = (jh, n\Delta t)$
- discrete solution $c_j^n \approx c(x_j, t^n)$

We set:

$$\lambda = \Delta t/h$$
$$x_{j+1/2} = x_j + h/2$$

Finite difference method

$$c_j^{n+1} = c_j^n - \lambda (H_{j+1/2}^n - H_{j-1/2}^n)$$

with $H_{j+1/2}^n = H(c_j^n, c_{j+1}^n)$.

The function $H(\cdot,\cdot)$ is the numerical flux.

CFL condition

$$|\lambda a| \leq 1$$

Forward Euler/Centered – FE/C

$$c_j^{n+1} = c_j^n - \frac{\lambda}{2} a (c_{j+1}^n - c_{j-1}^n)$$

 $H_{j+1/2} = \frac{1}{2} a (c_{j+1} + c_j)$

Truncation error

$$\tau(\Delta t,h)=\mathcal{O}(\Delta t+h^2).$$

Stability

FE/C is stable, that is

$$||c^n||_{\Delta,2} \le e^{T/2} ||c^0||_{\Delta,2}$$

under the condition

$$\Delta t \leq \left(\frac{h}{a}\right)^2$$
.

Lax-Friedrichs – LF

$$c_j^{n+1} = \frac{1}{2}(c_{j+1}^n + c_{j-1}^n) - \frac{\lambda}{2}a(c_{j+1}^n - c_{j-1}^n)$$

$$H_{j+1/2} = \frac{1}{2}(a(c_{j+1} + c_j) - \lambda^{-1}(c_{j+1} - c_j))$$

Truncation error

$$\tau(\Delta t, h) = \mathcal{O}\Big(\Delta t + h^2 + \frac{h^2}{\Delta t}\Big).$$

Stability

If the CFL condition is satisfied, LF is strongly stable

$$||c^n||_{\Delta,1} \leq ||c^{n-1}||_{\Delta,1}.$$

Lax-Wendroff – LW

$$c_j^{n+1} = c_j^n - \frac{\lambda}{2} a(c_{j+1}^n - c_{j-1}^n) + \frac{\lambda^2 a^2}{2} (c_{j+1}^n - 2c_j^n + c_{j-1}^n)$$

$$H_{j+1/2} = \frac{1}{2} (a(c_{j+1} + c_j) - \lambda a^2 (c_{j+1} - c_j))$$

Truncation error

$$\tau(\Delta t, h) = \mathcal{O}(\Delta t^2 + h^2 + h^2 \Delta t).$$

Stability

Under the CFL condition, LW is strongly stable:

$$||c^n||_{\Delta,2} \leq ||c^{n-1}||_{\Delta,2}.$$

Using the von Neumann analysis: if $c_j^0=c_0(x_j)=\sum_{k=-\infty}^\infty \alpha_k e^{ikjh}$, then

$$c_j^n = \sum_{k=-\infty}^{\infty} \alpha_k e^{ikjh} \gamma_k^n \text{ with } |\gamma_k| = 1 - 4\lambda^2 a^2 \sin^4\left(\frac{hk}{2}\right) (1 - \lambda^2 a^2).$$

Upwind – U

$$c_j^{n+1} = c_j^n - \frac{\lambda}{2} a(c_{j+1}^n - c_{j-1}^n) + \frac{\lambda}{2} |a| (c_{j+1}^n - 2c_j^n + c_{j-1}^n)$$

$$H_{j+1/2} = \frac{1}{2} (a(c_{j+1} + c_j) - |a| (c_{j+1} - c_j))$$

Truncation error

$$\tau(\Delta t, h) = \mathcal{O}(\Delta t + h).$$

Stability

If the CFL condition is satisfied, U is strongly stable

$$||c^n||_{\Delta,1} \le ||c^{n-1}||_{\Delta,1}.$$

Function for solving linear transport equation

Input

- a propagation rate;
- I space interval, T final time;
- u0, u1 initial and inflow data;
- N number of subdivision of the interval [0, L];
- ullet lambda $\lambda = \Delta t/h$.

Output

- x grid points;
- t time;
- u n-th row contains the values of c in (x, t^n) .

Exercise 1

Consider the equation:

$$\frac{\partial c}{\partial t} + \frac{\partial c}{\partial x} = 0 \quad x \in (-2, 3), t \in (0, 1.6]$$

$$c(x, 0) = \begin{cases} 1 - |x| & |x| \le 1 \\ 0 & |x| \ge 1 \end{cases}$$

$$c(-2, t) = 0 \quad t \in (0, 1.6]$$

- Solve the equation using LF with h = 0.1 and $\lambda = 0.8$.
- Compare the computed solution with the exact one.
- Use smaller values for h and the same value for λ .
- Compute the solution for T=0.8 with the same values of h and $\lambda=1.6$.
- Compute the solution with the other schemes and compare the computed solutions.

Exercise 2

For values of x in the interval [-1,3] and t in [0,2.4], solve the transport equation

$$\frac{\partial c}{\partial t} + \frac{\partial c}{\partial x} = 0,$$

with the initial data

$$c(x,0) = \begin{cases} \cos^2(\pi x) & |x| \le 1/2 \\ 0 & otherwise \end{cases}$$

and the boundary data c(-1,t)=0. Use the four schemes for h=1/10, h=1/20, and h=1/40 as follows

- a. Upwind with $\lambda = 0.8$
- b. FE/C with $\lambda = 0.8$
- c. LF with $\lambda = 0.8$ and $\lambda = 1.6$
- d. LW with $\lambda = 0.8$

How does the error decrease as the mesh gets finer?

Exercise 3

For values of x in the interval [0,10] and t in [0,10], solve the transport equation

$$\frac{\partial c}{\partial t} + \frac{\partial c}{\partial x} = 0,$$

with the initial data

$$c(x,0) = \begin{cases} \sin(2\pi x) & 0 \le x \le 1\\ 0 & otherwise \end{cases}$$

and the boundary data c(0, t) = 0.